Электрооборудование

Метод седиментации воздуха. Методы отбора проб воздуха и приборы

Метод седиментации воздуха. Методы отбора проб воздуха и приборы

При отборе пробы воздуха на определение уровня микробного загрязнения необходимо придерживаться таких обязательных условий: пробу воздуха берут не раньше, чем через 30 мин после уборки помещения, при этом должны быть закрыты форточки, двери, высота взятия пробы должна отвечать высоте рабочего стола. Осуществлять контроль необходимо в стерильной технологической одежде из безворсой ткани и в перчатках.

Перед подачей прибора в «чистое» помещение его необходимо протереть салфеткой из безворсой ткани с обработанными краями, смоченной спиртом этиловым 76 %. Передача прибора в производственные помещения 1 и 2 классов и, желательно, 3 класса чистоты должна осуществляться через воздушный шлюз для материалов. Контроль чистоты воздух должен проводиться не реже 2 раз в неделю перед началом и во время производственного процесса в рекомендованных точках.

Определение микробного загрязнения воздуха помещений методом седиментаци заключается в седиментации (оседании) микрофлоры (находящейся в воздухе), под действием силы тяжести, на поверхность питательной среды.

Этот метод используют для ориентировочной оценки микробной контаминации воздуха производственных помещений, преимущественно в помещениях с повышенным загрязнением воздуха и в тех случаях, когда невозможно исследование аспирационным методом (при использовании в производстве огнеопасных или взрывоопасных веществ).

В производственных помещениях контроль содержимого микроорганизмов проводят преимущественно в тех рабочих зонах, где находятся наиболее вероятные источники микробной контаминации воздуха (места с большим количеством персонала, повышенным риском образования пыли и т.д.), а также в зонах, где субстанции, вспомогательные вещества и готовый продукт непосредственно контактируют с окружающей средой.

Посев осуществляют на открытые чашки Петри с мясо-пептонным агаром (для определения количества бактерий) и в отдельности с агаром Сабуро (для определения количества грибков). Чашки расставляют в нескольких местах помещений: в длинных и узких — в 4 точках по горизонтали на расстоянии не более 5 м одна от другой; в помещениях площадью до 15 м2 — в двух противоположных точках помещения; больше 100 м2 — в каждой из 4 противоположных точек и в центре помещения. После 10 мин экспозиции в открытом состоянии чашки закрывают и помещают в термостат.

Посевы на мясо-пептонном агаре инкубируют при температуре 32,5 ± 2,5 °С, на агаре Сабуро — при 22,5 ± 2,5 ° С в течении 5 суток.

Учет результатов исследования . Для определения общего количества бактерий (грибков) в 1 м3 воздуха число выросших колоний на чашке умножают на один из множителей, представленных в таблице «расчет количества микроорганизмов в 1 м3воздуха при 10 мин экспозиции»:

Диаметр чашки, см

Площадь чашки, см2

Множитель

Н-р: на чашке диаметром 10 см выросло 50 колоний бактерий. В перерассчете на 1 м3 воздуха общее количество бактерий составляет 50 х 60 = 3000.

Однако этот метод не дает полного представления о количественном содержании микроорганизмов. Это связано с тем, что оседание микроорганизмов зависит от скорости движения воздуха, которая может отличаться в разных точках помещения. Кроме того, при использовании этого метода плохо улавливаются мелкодисперсные фракции бактериального аэрозоля и при высеве одной частицы аэрозоля, который содержит несколько жизнеспособных микроорганизмов, вырастает только одна колония, которая снижает показатели общего микробного загрязнения воздуха.

Поэтому седиментационный метод является приблизительным относительно оценки реальной степени микробной контаминации воздуха помещений. Тем не менее, он может служить для определения микробной контаминации воздуха в динамике, для оценки эффективности проводимых противоэпидемических мероприятий.

Определение микробного загрязнения воздуха аспирационным методом осуществляют с помощью пробозаборников инерционного типа — импактора или прибора для бактериологического анализа воздуха (щелевой аппарат Кротова, отсюда еще одно название метода: щелевой метод улавливания бактерий). В основу действия прибора положен принцип удара струи воздуха о поверхность питательной среды, которая помещается в чашке Петри.

При использовании аппарата Кротова воздух с помощью центробежного вентилятора всасывается через клиновидную щель, расположенную по радиусу над чашкой Петри. Диск, на котором закреплена чашка Петри, вращается со скоростью 1 оборот/сек, вследствие чего посев микроорганизмов происходит равномерно по всей поверхности питательной среды.

Местоположениеи количество точек взятия проб воздуха определяют в зависимости от размеров помещения (см. метод седиментации).

Чашку Петри с питательной средой помещают на диск прибора, тщательно закрывают крышку с помощью зажимов, установленных на его корпусе. Прибор включают в сеть, с помощью реометра устанавливают скорость движения воздуха — 25 или 40 л/мин. В среднем пробу воздуха отбирают в течение 5 мин со скоростью 40 л/мин.

После взятия пробы воздуха (из каждой определенной точки на две параллельные чашки Петри с МПА и средой Сабуро), чашки закрывают крышками и помещают в термостат. Питательные среды, температурный режим и время инкубации посевов такие же, как при исследовании воздуха методом седиментации (см. выше).

Учет результатов . Расчет осуществляют по формуле:

Х= а х 1000 / в, где X — число микроорганизмов в 1 м3 воздуха; а — количество колоний, которые выросли на чашке Петри после срока инкубации; в — объем исследуемой пробы воздуха, приведенный к нормальным условиям (см. формулу приведения объема воздуха к нормальным условиям для аспирационного метода).

Еще один метод рассчета: подсчитывают количество колоний грибков и бактерий, которые выросли на параллельных чашках, определяют среднее арифметическое и умножают его на 5.

Полученные результаты сравнивают с допустимыми границами микробной контаминации воздуха данного помещения по соответствующим таблицам: «классификация производственных помещений по допустимому содержанию микроорганизмов и механических частиц в воздухе для производства стерильной продукции» и «классификация помещений производства нестерильных лекарственных препаратов по мах допустимому количеству частиц и микроорганизмов в воздухе».

Расчет минимального суммарного объема пробы воздуха в каждой контрольной точке осуществляют в соответствии с методическими рекомендациями по контролю содержания микроорганизмов и частиц в воздухе производственных помещений (Приказ МОЗ Украины от 14 декабря 2001 г. № 502).

Смолина Света

ВВЕДЕНИЕ

Воздух является средой, содержащей значительное количество микроорганизмов. С воздухом они могут переноситься на значительные расстояния. В отличие от воды и почвы, где микробы могут жить и размножаться, в воздухе они только сохраняются некоторое время, а затем гибнут под влиянием ряда неблагоприятных факторов: высыхания, действия солнечной радиации, смены температуры, отсутствия питательных веществ и др. Наиболее устойчивые микроорганизмы могут долго сохраняться в воздухе и обнаруживаться там с большим постоянством. К такой постоянной микрофлоре воздуха относятся споры грибов и бактерий.

Количество микроорганизмов в воздухе колеблется в значительных пределах и зависит от условий, расстояния от поверхности земли, от близости населенных пунктов и т. д. Наибольшее количество микробов содержит воздух промышленных городов, наименьшее – воздух лесов, гор . Много бактерий находится в воздухе помещений, где неизбежно массовое хождение людей (кинотеатры, театры, школы, вокзалы и т. д.), сопровождающееся поднятием в воздух пыли .

Всем известно, что здоровье человека зависит от качества окружающей среды: воды, воздуха и других факторов. Школа – это такое место, где постоянно находится много людей. На своей одежде, обуви, внутри своего организма они приносят в школу много разных микробов, бактерий и других микроорганизмов.

Цель: на основе исследований определить степень загрязнения воздуха закрытых школьных помещений.

  1. определить количество микроорганизмов, содержащихся в воздухе различных помещений;
  2. изучить динамику содержания микроорганизмов в воздухе в течение учебного дня.

МЕТОДЫ ИССЛЕДОВАНИЯ

Наиболее старым методом микробиологического анализа воздуха является седиментационный метод (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательной средой при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5-10 минут. По окончании экспозиции чашки закрывают и помещают в термостат при 37 0 С на 24 ч, а затем при комнатной температуре выдерживают еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Данный метод пригоден для сравнительных оценок чистоты воздуха .

Учет посева бактерий из воздуха производят путем подсчета выросших колоний бактерий отдельно. Зная площадь чашки Петри, можно определить количество микроорганизмов в 1м 3 воздуха. Для этого: 1) определяется площадь питательной среды в чашке Петри по формуле рr 2 ; 2) вычисляют количество колоний на площади 1 дм 2 ; 3 воздуха .

Примерный расчет. В чашке Петри диаметром в10 см выросло 25 колоний.

  1. определяют площадь питательной среды в чашке Петри по формуле 3,14*5 2 или 3,14*25 = 78,5 см 2

2) вычисляют количество колоний на площади 1 дм , равного 100 см 2

25колоний – 78,5 см 2

х колоний – 100 мм 2

х=25*100/78,5=32 колоний

т. е. на площади 1 дм 2 имеется 32 колонии.

3) пересчитывают количество бактерий на 1м 3 воздуха, который равен 1000л. Содержащиеся 32 колоний бактерий на площади 1 дм 2 соответствуют объему 10л воздуха. Чтобы узнать количество в1м 3 воздуха, составляют пропорцию:

х=32*1000/10=3200

Следовательно, в1м 3 воздуха содержится 3200 бактериальных телец.

Таблица 1. Критерии для оценки загрязненности помещений по числу микроорганизмов в 1м 3 воздуха

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В ходе исследований для каждой микробиологической оценки использовалось по три чашки Петри. На основании подсчета колоний, выросших в чашках Петри, была проведена оценка содержания микроорганизмов, которые содержатся в воздухе различных помещений в разные периоды учебного дня.

На первом этапе исследования было проведено сравнение данных, полученных в разных помещениях в один период времени. Наименьшее количество микроорганизмов (1571) было выявлено в классном помещении, а наибольшее (16220) – в спортзале. По-видимому это объясняется тем, что занятие физкультурой, подвижные игры приводят к поднятию пыли, следовательно и микроорганизмов, находящихся в ней.

Таблица 3. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьных помещений

На втором этапе исследований был проведен сравнительный анализ загрязнения воздуха в одном и том же помещении, но в разные периоды учебного дня. Объектом для данного исследования был выбран коридор.

Таблица 4. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьного коридора в разные периоды времени

1-ая чашка

2-ая чашка

До 1 урока

1 перемена

5 перемена

На третьем этапе был также проведен анализ изменения содержания микроорганизмов в воздухе в одном помещении (класс химии), но при наличии двух дополнительных факторов: 1) проветриваемость помещения, 2) количество людей и интенсивность их передвижения.

В классе в течение всего дня были открыты форточки, что способствовало проветриванию помещения. Однако наблюдается резкое увеличение количества микроорганизмов во время 1 перемены, когда происходила смена различных классов. Таким образом, резкий скачок количества микроорганизмов, по-видимому, объясняется увеличением количества людей в помещении. При этом, проветриваемость помещения не оказывает существенного влияния на содержание микроорганизмов в воздухе в это время.

Однако на 5 перемене люди в классной комнате отсутствовали и это привело к снижению численности микроорганизмов в воздухе. Все это говорит о первостепенном влиянии именно такого фактора, как количество людей и интенсивность передвижения на степень загрязненеия воздуха микроорганизмами. Проветриваемость же помещений возможно оказывает свое влияние на общее количество микроорганизмов, но не на динамику их содержания.

Таблица 5. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения в разные периоды времени

На четвертом этапе был проведен сравнительный анализ классного кабинета и коридора в течение всего учебного дня.

Таблица 6. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения

1-ая чашка

2-ая чашка

1 перемена

2 перемена

3 перемена

4 перемена

5 перемена

После уроков

Таблица 7. Количество микроорганизмов, содержащееся в 1м 3 воздуха коридора

ЗАКЛЮЧЕНИЕ

  1. Наибольшее количество микроорганизмов выявлено в воздухе спортзала, а наименьшее – классной комнаты.
  2. Наблюдается тенденция увеличения количества микроорганизмов в воздухе коридора в течение учебного дня.
  3. В воздухе классного помещения содержание микроорганизмов увеличивается во время перемен и уменьшается во время уроков.
  4. Количество микроорганизмов в воздухе в первую очередь зависит от численности людей в помещении и интенсивности их передвижения.

СПИСОК ЛИТЕРАТУРЫ

1 Федоров М.В. Микробиология. – М.: Гос. Изд-во сельхозлитературы,1960.– 350 с.

2 Бакулина Н.А., Краева Э.Л. Микробиология.– М.: Медицина, 1980.– 338 с.

3 Павлович С.А., Пяткин К.Д. Медицинская микробиология. – Минск: Высшая школа, 1993. – 200 с.

4 Лабинская А.С. Микробиология с техникой микробиологических методов исследования.– М.: Медицина, 1968.– 392 с.

5 Черемисинов Н.А., Боева Л.И., Семихатова О.А. Практикум по микробиологии.– М.: Высшая школа, 1967.– 168 с.

6 Шлегель Г.Х. Общая микробиология.– М.: Мир, 1987.– 566 с.

Страница 87 из 91

Количественный и особенно качественный состав микрофлоры воздуха является санитарным показателем степени загрязнения воздушной среды.
Для оценки степени чистоты воздуха А. И. Шафир предложил следующие критерии. В жилых невентилируемых помещениях в летнее время воздух может считаться чистым при условии, если общее количество микроорганизмов в 1 м3 воздуха будет меньше 1500, а зеленящего и гемолитического стрептококка меньше 16, а загрязненным, если содержит больше 2500 микроорганизмов и больше 36 стрептококков. Зимой, естественно, количество микроорганизмов в помещениях значительно увеличивается. По данным. А. И. Шафира, для чистого воздуха общее количество микробов будет меньше 4500, а стрептококков меньше 36 в 1 м3, для загрязненного - общее количество микробов больше 7000, а стрептококков больше 124.
Для определения степени чистоты воздуха применяются следующие микробиологические методы исследования.

  1. Метод, основанный на принципе ударного действия воздушной струи.
  2. Седиментационный метод.

При любом микробиологическом методе исследования воздуха учитывается как общее количество микроорганизмов в определенном объеме воздуха, так и их качественный состав. Отдельно учитывается аэробная и анаэробная микрофлора.
Для выявления аэробных сапрофитов в воздухе посев производится на мясо-пептонный агар, а при исследовании на наличие стрепто- и стафилококков воздух засевают на специальные среды (сахарный агар, кровяной агар). Для выделения и подсчета стафило- и стрептококков применяют также мясо-пептонный агар с добавлением 3% дефибринированной бараньей крови, 0,25% глюкозы и генцианвиолета 1: 50 000-1: 500 000.
Для исследования на наличие анаэробных микробов воздух засевают на железосульфитную среду (среда Вильсон-Блера). Эту среду готовят следующим образом. К 100 мл расплавленного, а затем остуженного до 80° щелочного мясо-пептонного агара добавляют 1% стерильной глюкозы, 10 мл 20% сернокислого натрия и 1 мл 8% раствора хлорного железа. Раствор хлорного железа готовится на стерильной дистиллированной воде. Раствор сернокислого натрия стерилизуется 1 час текучим паром.
Метод исследования воздуха по принципу ударной струи. Предложен ряд аппаратов для исследования воздуха методом ударной струи. Аппарат, сконструированный советским ученым Ю. А. Кротовым, имеет преимущество перед другими (рис. 124, 125).
Аппарат Кротова смонтирован в одном ящике и состоит из трех частей: 1) узла для отбора проб воздуха; 2) микроманометра; 3) питающего механизма, размещенного в деревянном футляре (электрической части).

Прибор можно подключить как на 127 V, так и на 220 V, и при помощи специального переключателя и реостата регулировать скорость проходящей через прибор струи воздуха. При помощи аппарата Кротова в течение 1 минуты можно пропустить от 25 до 50 л воздуха. Механизм действия аппарата Кротова заключается в следующем. Исследуемый воздух при помощи центробежного вентилятора, вращающегося со скоростью 4000- 5000 оборотов в минуту, энергично, засасывается через щель крышки прибора и ударяется о поверхность открытой чашки Гейденрейха, залитой питательным агаром и установленной на диске малой крыльчатки. Содержащиеся в воздухе микроорганизмы оседают на питательном агаре чашки Гейденрейха.

Рис. 124. Прибор Кротова для микробиологического исследования воздуха (общий вид).


Рис: 125. Прибор Кротова для микробиологического исследования воздуха (схема).
1 - цилиндрический корпус; 2 - основание корпуса; 3 - электромотор; 4 - центробежный вентилятор; 5 - восьмилопастная крыльчатка; 6 - диск; 7 - пружины; 8 - чашка Гейденрейха; 9 - крышки; 10 - накидные замки; 11 - диск из плексигласа; 12 - клиновидная щель; 13 - разрезное кольцо; 14 - штуцер с диафрагмой; 15 - выводная трубка.

Для равномерного распределения микроорганизмов по всей поверхности чашки столик с чашкой должен вращаться не очень быстро (60 оборотов в минуту). Из прибора воздух выводится через воздухопроводную трубку, которая соединена с микроманометром, показывающим скорость пропускания воздуха через прибор. Экспозиция чашки 10 минут, после чего мотор останавливают. Снимают крышку прибора. Достают чашку с посевом воздуха и закрывают ее крышкой. Дальше поступают так. При определении аэробной флоры чашку Гейденрейха с посевом ставят на 24 часа в термостат при температуре 37°, а затем оставляют на 24 часа при комнатной температуре и проводят подсчет всех выросших колоний на поверхности агара. Затем чашку оставляют еще на 24 часа при комнатной температуре, после чего (через 72 часа с момента посева) проводят дифференцированный подсчет, т. е. учитывают отдельно пигментные формы, спороносные формы и плесневые грибы.
Для определения количества анаэробных микроорганизмов чашку с посевом, вынутую из прибора Кротова, для создания анаэробных условий роста микробов дополнительно заливают 10-15 мл мясо-пептонного агара и ставят в термостат при температуре 37° на 24 часа.
На сульфитном агаре, которым залита чашка до посева, анаэробные микробы дадут рост в виде почерневших колоний, по числу которых можно судить о степени загрязнения воздуха анаэробными микробами.
Бактериальное загрязнение воздуха выражается общим числом микробов в 1 м3 его.
Пример. Через аппарат Кротова пропущено за 10 минут 125 л воздуха, на поверхности среды выросло 100 колоний.
Число микробов в 1 м3 воздуха
Седиментационный метод исследования воздуха (чашечный метод). Седиментационный метод является наиболее простым методом для изучения микрофлоры воздуха, хотя не обладает большой точностью.
Если применять чашки одного диаметра при одном сроке экспозиции, то этот метод может быть использован для получения сравнительных данных по бактериальному загрязнению воздуха. Техника этого метода заключается в следующем. Чашки Гейденрейха-Петри с застывшим агаром выставляют в открытом виде на разных высотах в помещении на различные сроки (от 15 минут
до 1.5 часов). Затем чашки закрывают и ставят в термостат. Инкубацию посевов производят по методике, описанной выше.
Для пересчета количества микробов на 1 м3 пользуются формулой В. Л. Омелянского, который считал, что в течение 10-минутной экспозиции на поверхность плотной питательной среды 100 см2 оседает столько микробов, сколько их находится в 10 л воздуха. Им была составлена соответствующая таблица расчета, пользуясь которой можно высчитать общее количество микроорганизмов в 1 м3 воздуха. В этой таблице даны постоянные множители, на которые надо умножить полученные количества колоний в зависимости от диаметра и площади чашки, где производится посев. Приводим схему постоянных множителей для расчета количества микробов по Омелянскому (табл. 34).
Таблица 34
Расчет числа микробов в 1 м3 воздуха (по Омелянскому)


Диаметр чашки в см

Площадь чашки в см2

Множитель расчета числа микробов в 1 м3 воздуха

Пример. На чашке площадью 63 см2 выросло 25 колоний. Количество микробов в 1 м3 воздуха в данном случае равно 25X80 = 2000.

С санитарно-микробиологической точки зрения воздух представляет собой среду, в которой микроорганизмы не способны размножаться, так как в нем нет питательных веществ и влаги, а солнечные лучи оказывают бактерицидное действие. Тем не менее в воздухе постоянно присутствуют пигментообразующие кокки, споры бактерий, плесеней и актиномицетов. Микробная загрязненность воздуха имеет непостоянный характер и зависит от многих факторов. Так, болезнетворные микробы попадают в воздух с пылью из почвы и с выделениями больных людей и животных. Воздух помещений загрязняется во время сухой уборки, чихания и кашля. При этом капли аэрозоля, находящиеся в воздухе, служат источником аэрогенного заражения окружающих. Скорость оседания капель зависит от диаметра аэрозоля.

Бактериальные аэрозоли делят на три фазы:

1. Крупнокапельная фаза с диаметром частиц аэрозоля более 0,1 мм; длительность пребывания таких частиц в воздухе несколько секунд, капли оседают быстро.

2. Капельно-ядерная фаза , имеющая диаметр частиц 0,1 мм и менее. Частицы находятся в воздухе длительное время и рассеиваются на большие расстояния с потоками воздуха, вместе с которыми распространяются различные микроорганизмы, в том числе и болезнетворные.

3. Фаза бактериальной пыли имеет частицы разного диаметра от 1 до 0,01 мм. Эта фаза имеет наибольшее эпизоотологическое и эпидемиологическое значение, так как она глубоко проникает в дыхательные пути. Аэрогенным способом инфекционные заболевания передаются в основном в закрытых помещениях.

Выживаемость патогенных микроорганизмов, находящихся во взвешенном состоянии, зависит от биологических свойств возбудителя, а также температуры и влажности воздуха. Например, возбудители туберкулеза, сибирской язвы, хорошо переносящие высыхание, длительное время сохраняются в окружающей среде.

Микробиологическое исследование воздуха проводят для определения количества МАФАнМ, т. е. общего микробного числа и количества санитарно_показательных микроорганизмов. Количество МАФАнМ в воздухе определяют посевом на поверхность МПА; количество санитарно-показательных микробов определяют посевом на кровяной агар, желточно-солевой агар. Для определения наличия спор плесеней и дрожжей используют сусло_агар или среду Сабуро, Чапека. Существует много методов бактериологического исследования воздуха, самыми доступными являются методы Коха и Кротова.

Седиментационный метод Коха (лат. sedimentum - осадок). Суть метода заключается в осаждении микробных частиц и капель аэрозоля на поверхность плотной питательной среды под действием силы тяжести.

Методика. Чашки Петри с МПА, средой Сабуро оставляют открытыми на 5–20 мин в исследуемом помещении (классе, в цехах молокозавода, мясокомбината и т. д.). Затем чашки закрывают и помещают в термостат при температуре +30_С, если это МПА или кровяной агар, после чего культивируют в течение 48 ч; если это среда Сабуро - культивируют при температуре +25_С в течение 4–7 суток. Затем проводят подсчет выросших колоний во всей чашке.


После подсчета выросших колоний в чашке Петри определяют количество микроорганизмов в 1 м3 воздуха по формуле Омелянского, согласно которой в чашки с питательной средой площадью 100 см2 в течение 5 мин оседает столько микробных клеток, сколько их содержится в 10 л воздуха:

Х = а*100*1000*5/b*10*Т

где Х - количество микробов в 1 м3 (1000 л) воздуха; а - количество выросших колоний в чашках; b - площадь чашки (80 см2); 5- время экспозиции по правилу Омелянского; Т -время, в течение которого чашка была открыта; 10 - 10 л воздуха по правилу Омелянского; 1000 - 1 м3 воздуха; 100 -100 см2 питательной среды.

Аспирационный метод Кротова является более точным, так как прибор снабжен микроманометром, показывающим количество (объем) литров посеянного воздуха. Аппарат Кротова-это цилиндрический прибор, внутри которого имеется электромотор с центробежным вентилятором. При вращении вентилятора из исследуемого помещения воздух засасывается через узкую клиновидную щель в крышке прибора, под которой находится вращающаяся платформа с чашкой Петри, струя воздуха ударяется о влажную поверхность питательной среды, микроорганизмы из воздуха оседают. Чашки с посевами помещают в термостат на 24–48 ч при температуре +30_С. Подсчет колоний производят так же, как и при седиментационном методе. В дальнейшем число микробов в 1 м3 воздуха определяют по формуле

где Х - число микробов в 1 м3 воздуха; а - число выросших колоний; 1000 л- 1 м3 воздуха; b - количество посеянного воздуха.

Требования, предъявляемые к микробиологическим показателям воздуха, представлены в табл. 19 (исследуют один раз в месяц).

В каждой бактериологической лаборатории имеется бокс для проведения посевов и пересевов, воздух в боксе следует проверять на бактериальную загрязненность не менее двух раз в неделю, к качеству воздуха в боксе предъявляются особые требования. Для проведения исследования чашки Петри с МПА и средой Сабуро оставляют открытыми в боксе на 15 мин, затем чашки со средой МПА выдерживают в термостате 48 ч при температуре +37_С, чашки со средой Сабуро - 96 ч при температуре +25...+27_С. Допускается наличие 5 колоний плесени в чашках.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
  • 1. Микрофлора воздуха
  • 2. Методы очистки воздуха
    • 2.1 Схема получения стерильного воздуха
    • 2.2 Механические фильтры (фильтры предварительной очистки)
    • 2.3 Компрессор
    • 2.4 Влагоотделитель
    • 2.5 Охладитель
    • 2.6 Вихревой сепаратор
    • 2.7 Фильтры
  • 3. Микробиология воздуха
  • 4. Микробиологические исследования воздуха
    • 4.1 Методы забора проб материала
  • Заключение
  • Список использованных источников

Введение

В настоящее время данное направление исследования очень актуально.

Микрофлора воздуха делится на резидентную и временную. Первая обнаруживается часто и повсеместно, вторая - значительно реже, так как не обладает стойкостью в отношении действия различных факторов. В составе резидентной микрофлоры, формирующейся за счет почвенных микроорганизмов, - микрококки, сарцины, бациллы, актиномицеты, плесневые грибы. Временная микрофлора воздуха также может сформироваться из почвенных микроорганизмов и из микроорганизмов, поступающих в воздух с поверхности водоемов. Контаминация воздуха патогенными микроорганизмами происходит в основном капельным путем за счет кашля, чихания, разговора, благодаря чему образуются взвешенные в воздухе аэрозольные частицы. Размер образовавшихся аэрозольных частиц различен (от 10-100 до 2000 нм). В зависимости от размера капель, их электрического заряда, скорости движения аэрозольные частицы делятся на капельную и пылевую фазы и капельные ядрышки.

Капельная фаза. Представляет собой мелкие капли, длительно сохраняющиеся в воздухе и испаряющиеся до оседания.

Пылевая фаза. Состоит из крупных, быстро оседающих и испаряющихся капель, благодаря чему образуется пыль, поднимающаяся в воздух.

Капельные ядрышки. Это мелкие капли (до 100 нм), которые, высыхая, остаются в воздухе во взвешенном состоянии и образуют устойчивую аэродисперсионную систему, в которой частично сохраняется влага, поддерживающая жизнеспособность микроорганизмов воздуха.

Наибольшую опасность представляют микроорганизмы, заключенные в мелких аэрозольных частицах (капельных ядрышках), так как они способны глубоко проникать в дистальные отделы легких - альвеолы. В то же время более крупные частицы аэрозоля оседают в носовой полости и вместе со слизью выделяются во внешнюю среду.

Мониторинг атмосферного воздуха включает контроль физико-химических и биологических свойств воздуха, отражающих степень его соответствия гигиеническим и экологическим нормативам. Мониторинг атмосферного воздуха направлен на получение данных, характеризующих его экологическое и гигиеническое состояние.

Экологический норматив качества атмосферного воздуха - критерий, отражающий предельно допустимое максимальное содержание загрязняющих веществ, при котором отсутствует вредное воздействие на окружающую среду.

Гигиенический норматив качества атмосферного воздуха - критерий, отражающий максимальное содержание неблагоприятных факторов, при котором отсутствует вредное воздействие на здоровье человека.

Воздух производственных помещений может быть атмосферным (без предварительной очистки) и вентиляционным (через систему воздухоподготовки).

Воздух производственных помещений - один из основных наиболее значительных потенциальных источников загрязнения лекарственных средств, поэтому его очистка является одним из ключевых вопросов технологической гигиены. Уровень чистоты воздуха, находящегося в помещениях, определяется классом чистоты помещения.

Стерилизацию воздуха используют:

Для создания воздушной среды в помещении высокого уровня чистоты,

Для подачи стерилизованных жидкостей (стерилизованный, сжатый, транспортный),

Для аэрирования при культивировании микроорганизмов и культур клеток в биотехнологических производствах.

1. Микрофлора воздуха

Микрофлора воздуха зависит от микрофлоры почвы или воды, над которыми расположены слои воздуха. В почве и воде микробы могут размножаться, в воздухе же они не размножаются, а только некоторое время сохраняются. Поднятые в воздух пылью они или оседают с каплями обратно на поверхность земли, или погибают в воздухе от недостатка питания и от действия ультрафиолетовых лучей. Поэтому микрофлора воздуха менее обильна, чем микрофлора воды и почвы. Наибольшее количество микробов содержит воздух промышленных городов. Воздух сельских мест гораздо чище. Микрофлора воздуха отличается тем, что содержит много пигментированных, а также спороносных бактерий, как более устойчивых к ультрафиолетовым лучам (сарцины, стафилококки, розовые дрожжи, чудесная палочка, сенная палочка и другие). Весьма богат микробами воздух в закрытых помещениях, особенно в кинотеатрах, вокзалах, школах, в животноводческих помещениях и других.

Вместе с безвредными сапрофитами в воздухе, особенно закрытых помещений, могут находиться и болезнетворные микробы: туберкулезная палочка, стрептококки, стафилококки, возбудители гриппа, коклюша и так далее. Гриппом, корью, коклюшем заражаются исключительно капельно-воздушным путем. При кашле, чихании выбрасываются в воздух мельчайшие капельки-аэрозоли, содержащие возбудителей заболеваний, которые вдыхают другие люди и, заразившись, заболевают. Микробиологический анализ воздуха на патогенную флору производят только по эпидемическим показаниям.

В плановом порядке пробы воздуха для бактериологического исследования берутся в операционных блоках, послеоперационных палатах, отделениях реанимации, интенсивной терапии и других помещениях, требующих асептических условий. По эпидемическим показаниям бактериологическому исследованию подвергают воздух ясель, детских садов, школ, заводов, кинотеатров и так далее.

Обнаружение в воздухе закрытых помещений гемолитического стрептококка группы А и стафилококка, обладающего признаками патогенности, являются показателем эпидемического неблагополучия данного объекта.

2. Методы очистки воздуха

Для очистки воздуха применяют различные методы: физические, химические и биологические. Среди физических методов - абсорбция примесей на активированном угле и других поглотителях, абсорбция жидкостями. Наиболее распространенными химическими методами очистки воздуха являются озонирование, прокаливание, каталитическое дожигание, хлорирование. Биологические методы очистки газовоздушных выбросов начали применять сравнительно недавно и пока в ограниченных масштабах.

2.1 Схема получения стерильного воздуха

Для получения стерильного воздух в промышленности применяют многоступенчатую систему очистки воздуха. Число ступеней и выбор материала зависит от заданной конечной чистоты. Используют волокнистые и пористые фильтрующие материалы.

Применяют:

1) фильтры грубой очистки (эффективность 40-60%)

2) фильтры средней очистки (эффективность 60-90%)

3) высокоэффективные стерилизующие фильтры (99, 997%)

2.2 Механические фильтры (фильтры предварительной очистки)

Это самые простые фильтры, применяемые в воздухоочистителях. Они состоят из обычной мелкой сетки и используются в качестве фильтров предварительной очистки. Предназначены для удаления крупных пылевых частиц, шерсти животных. Такие фильтры устанавливаются практически на всем климатическом оборудовании и защищают от пыли не только людей, но и внутренности самих приборов.

Являясь предварительным фильтром, защищает последующие фильтрующие элементы (угольные, HEPA - фильтры) от преждевременного износа.

Большинство фильтров предварительной очистки устраняют частички размером 5-10 микрон. Несмотря на то, что процентное соотношение частичек размером от 5 микрон по отношению в общей массе пыли находящихся в воздухе мало, он играет очень важную роль, поскольку если в системе не используется фильтр предварительной очистки, или он не достаточно эффективно удаляет частицы, это может привести к преждевременному износу активированного угольного или HEPA-фильтра.

Представляют собой волокнистую структуру. В таких фильтрах пористые фильтрующие слои различной плотности образуются из волокон, обычно связанных склеивающими веществами. В волокнистом рулонном воздушном фильтре рулоны фильтрующего материала устанавливают на катушки в верхней части фильтра и по мере запыления перематывают на нижние катушки. Использованные материалы выбрасываются; в отдельных случаях возможна их промывка или очистка пневматически, что делает предварительные сетчатые фильтры многоразовыми.

2.3 Компрессор

В рабочем цилиндре компрессора (масляного) воздух уменьшает свой объем приблизительно в 10 раз и одновременно нагревается. При высокой температуре происходит частичное испарение масла со стенок компрессора, поэтому сжатый воздух насыщается парами масла.

Горячий сжатый воздух попадает в ресивер, где несколько охлаждается при контакте со стенками. К сожалению, за время нахождения воздуха в ресивере (обычно это время не превышает 30 секунд) в виде конденсата выпадает лишь незначительная часть влаги, а остальная в виде взвеси мельчайших капель воды или водяного и масляного тумана проходит дальше в трубопровод.

2.4 Влагоотделитель

Проходя через керамический фильтрующий элемент влагоотделителя, воздух теряет капли жидкости, превышающие поры фильтра. Часто применяемые недорогие керамические фильтры с большим диаметром пор 30-60 мкм, не способны задерживать мелкие капли конденсата. Температура же воздуха пока ещё слишком высока, поэтому большое количество влаги содержится в виде пара. Если скорость воздуха выше - 1 м/с, конденсат не успевает полностью стечь в нижнюю часть фильтра, крупные капли конденсата дробятся и уносятся потоком воздуха в пневмосистему. Происходит «захлебывание» фильтра.

2.5 Охладитель

После влагоотделителя, установленного непосредственно за компрессором, стоит охладитель воздуха, который чаще всего представляет собой радиатор, который рассчитанный на максимальное давление, создаваемое компрессором. Сжатый воздух здесь принудительно охлаждается до комнатной (или ниже) температуры, в связи с чем значительная часть влаги конденсируется в виде тумана и сравнительно крупных капель. Как правило, производителем ограничивается температура воздуха на входе в охладитель на уровне (40 - 60)°С.

2.6 Вихревой сепаратор

После охладителя поставим вихревой сепаратор масляно-водяного конденсата. Под действием центробежной силы капли конденсата отбрасываются к стенке сепаратора, где происходит их слияние и укрупнение. Крупные капли под действием силы тяжести стекают в нижнюю часть сепаратора, откуда удаляются с помощью конденсатоотводчика.

Эффективность вихревого сепаратора очень сильно зависит от скорости потока, поэтому выбор производительности сепаратора необходимо производить таким образом, чтобы снизить вероятность ошибки до минимума.

Из вихревого сепаратора сжатый воздух попадает в трубопровод. Поскольку температура на улице ниже, чем в компрессорной, при активном контакте со стенками трубопровода воздух охлаждается до комнатной температуры продолжается и процесс образования конденсата из мельчайших частиц водяного и масляного тумана.

Все предыдущие мероприятия были направлены на то, чтобы количество этого конденсата было, по возможности, минимальным.

Из трубопровода сжатый воздух, «обогащенный» захваченными по пути продуктами коррозии трубопровода и уже достаточно крупными каплями конденсата, снова поступает в вихревой сепаратор.

2.7 Фильтры

В зависимости от размера улавливаемых частиц фильтры делят на:

· предварительные, или фильтры грубой очистки - останавливают частицы размером свыше 5-40 мкм, в зависимости от выбранного фильтропатрона;

· фильтры тонкой очистки - останавливают частицы размером более 1 мкм, включая капельную фракцию масла (0,1 мг/м);

· микрофильтры - останавливают частицы размером более 0,01 мкм, остаточное содержание масла не превышает 0,01 мг/м;

· фильтры на основе активированного угля - останавливают частицы размером более 0,003 мкм, содержание масла не более 0,005 мг/м.

Фильтры обязательно должны быть оснащены манометрами или датчиком, регистрирующим разность давления на входе и выходе. По ее величине можно судить о степени загрязненности фильтра.

3. Микробиология воздуха

Состав микрофлоры воздуха очень различен. В нем обнаружено до 100 различных видов сапрофитных микроорганизмов: споры гнилостных бактерий; споры плесневых грибов, дрожжей, актиномицет; из вегетативных форм микробов пигментные и беспигментные кокки и бактерии. Наиболее часто в воздухе встречаются следующие виды: Вас. subtilis, Вас. mesentericus, Вас. mycoides, P. glaucum, Mucor mucedo, Т. alba, Т. rosea, Act. griseus, Micr. roseus, Micr. candicans, Staph. citreus, Staph. albus и др.

Количественный и качественный состав микрофлоры атмосферного воздуха зависит от характера почвенного и водного покрова, общесанитарного состояния местности, сезонных, климатических и метеорологических факторов (интенсивность солнечной радиации, температура, атмосферные осадки и пр.).

Наиболее чистый воздух в районе полюса, над лесными массивами, морями, горами. Воздух над тайгой, морем содержит лишь единицы микробных клеток в 1 м3.

Воздух более загрязнен вблизи земной поверхности. Особенно загрязнен воздух в городах в период интенсивного уличного движения: содержание микроорганизмов достигает 4000--9800 особей в 1 м3; в парке, расположенном в окрестностях города, всего 175--345 особей в 1 м3. Зеленые древесные насаждения задерживают пыль и содержащихся в ней микробов.

Атмосферные осадки при прохождении через воздушную среду растворяют и осаждают находящиеся в ней взвешенные частицы. Поэтому после дождя или снегопада атмосфера в значительной степени очищается от бактерий.

Зимой благодаря наличию снежного покрова воздух содержит меньше микроорганизмов, чем летом.

Количество микроорганизмов в воздухе помещений для животных зависит отсанитарно-гигиенического состояния помещения, плотности размещения животных, активности движения и т. д. В воздухе помещений для крупного рогатого скота содержание микроорганизмов достигает 12000--86000 в 1 м3, в свинарниках --25000-- 67000, в птичниках --30000--120000 и более особей в 1 м3 (А. П. Снегов, 1977).

В закрытых помещениях накапливается микрофлора, выделяемая человеком и животными: стрептококки, пневмококки, дифтероиды, стафилококки, т. е. обитатели верхних дыхательных путей. Кроме представителей носоглоточной микрофлоры в воздухе помещений иногда можно обнаружить микобактерии туберкулеза, вирусы.

4. Микробиологические исследования воздуха

Микробиологическое исследование воздуха проводят в целях определения общего количества микроорганизмов (микробного числа) и количества санитарно-показательных стрептококков (иногда и патогенных стафилококков). На предприятиях мясной и молочной промышленности в отдельных производственных помещениях исследуют воздух на содержание в нем спор плесневых грибов и дрожжей. Для этого используют различные питательные среды. Так, общее количество микроорганизмов в воздухе определяют при посеве на МПА; санитарно-показательных микробов -- на кровяной агар, среды Гарро и Туржецкого; патогенных стафилококков -- на желточно-солевой или кровяно-солевой агар; спор плесеней и дрожжей -- на сусло-агар или среду Сабуро; протеолитических бактерий -- на МПЖ или молочный агар.

Воздух является средой, в которой микроорганизмы не способны размножаться, что обусловлено отсутствием в воздухе питательных веществ, недостатком влаги, губительным действием солнечных лучей. Жизнеспособность микроорганизмов в воздухе обеспечивается нахождением их в частицах воды, слизи, пыли, кусочках почвы.

Микрофлору воздуха условно разделяют на постоянную, или резидентную (автохтонную), и транзиторную, или временную (аллохтонную).

К представителям резидентной (автохтонной) микрофлоры, которая в основном формируется за счет микроорганизмов почвы, относятся пигментообразующие кокки (М. roseus, М. flavus‚ S. flava, S. alba), спорообразующие бациллы (В. subtilis, В. micoides, B. mesentericus), актиномиценты (Actinomyces spp.), грибы (Penicillium spp.,Aspergillus). дрожжеподобные грибы рода Candida.

Транзиторная (аллохтонная) микрофлора воздуха формируется преимущественно за счет микроорганизмов почвы, а также за счет видов, поступающих с поверхности водоемов и из организма людей и животных. При этом каждый человек или животное при обычном дыхании, разговоре, кашле, выделяют так называемый аэрозоль, который представляет собой коллоидную систему, состоящую из воздуха, капелек жидкости или частиц твердого вещества, включающих большое количество микроорганизмов.

Воздух не является благоприятной средой для развития аллохтонных микроорганизмов, они могут сохранять в воздухе жизнеспособность лишь временно (одни виды более, другие менее продолжительно). Многие виды отмирают сравнительно быстро под влиянием высушивания и солнечной радиации.

Возможно также попадание микробов в воздух со слущивающимся эпидермисом кожных покровов, с пылью загрязненного постельного белья и зараженной почвы.

Контаминация воздуха закрытых помещений патогенными микроорганизмами происходит в основном воздушно-капельным путем -- при разговоре, кашле, чихании от больных людей или носителей возбудителей инфекционных болезней, поражающих верхние дыхательные пути.

Микрофлора воздуха меняется в зависимости от климата, времени года, экологического состояния местности (наличие промышленных предприятий, уровня развития промышленного и сельскохозяйственного производства, транспортной инфраструктуры и т. д.). Большое значение для очистки воздуха имеют зеленые насаждения.

В составе микрофлоры воздуха преобладают различные виды кокков, споры бацилл, грибов, дрожжи. Могут встречаться патогенные и токсигенные микроорганизмы (стафилококки, стрептококки, туберкулезные палочки и т. д.).

Их количество в воздухе рабочих и жилых помещений зависит от экологического состояния. Скопление людей, плохая вентиляция, недостаточная уборка способствуют увеличению количества микроорганизмов в воздухе.

Экологическая оценка воздуха помещений осуществляется по двум показателям: общему количеству микроорганизмов и количеству санитарно-показательных микроорганизмов в 1 м3 воздуха.

Санитарно-показательными микроорганизмами служат гемолитические стрептококки и стафилококки. Они являются постоянными обитателями верхних дыхательных путей, слизистой носа и ротовой полости человека. Ориентировочно воздух производственных помещений должен содержать от 100 до 500 бактерий в 1 м3. В жилых помещениях -- до 1500 шт., и гемолитических стрептококков -- до 16 шт. в 1 м3. Загрязненным воздух жилых помещений считается при наличии (в 1 м3) 2500 всех бактерий и 38 стрептококков. Воздух холодильных камер исследуется также на загрязненность плесенями.

При оценке экологического состояния воздуха закрытых помещений в зависимости от задач исследования определяется:

Общее микробное число (ОМЧ) (КОЕ/м3);

Количество золотистого стафилококка (Staphylococcus aureus) (КОЕ/м3);

Количество плесневых и дрожжевых грибов (КОЕ/дм3).

Воздушная среда, как объект санитарно-микробиологического исследования имеет целый ряд специфических особенностей. Как правило, среди них в первую очередь выделяют: отсутствие питательных веществ и, как следствие, невозможность размножения микроорганизмов;

Кратковременное нахождение микроорганизмов в воздушной фазе и их самопроизвольная седиментация;

Невысокие концентрации микроорганизмов в воздухе

Относительно небольшое число видов микроорганизмов, обнаруживаемых в воздухе.

Микроорганизмы находятся в воздухе в форме аэрозоля. Микробный аэрозоль - это взвесь в воздухе живых или убитых микробных клеток, адсорбированных на пылевых частицах или заключенных в «капельные ядра». Он включает частицы размером от 0,001 до 100 мкм (мкм - микрометр). Размер частиц определяет 2 важных параметра аэрозоля:

· скорость оседания (седиментации) - для частиц размером от 10 до 100 мкм составляет 0,03 - 0,3 м/сек. Частицы указанного размера оседают на поверхности за 5-20 минут. Частицы с размером 5 мкм и менее формируют практически не седиментирующий аэрозоль постоянно взвешенных в воздухе частиц;

· проникающая способность частиц - наиболее опасны частицы с размером от 0,05 до 5 мкм, так как они задерживаются в бронхиолах и альвеолах. Именно эта фракция пылевых частиц принимается во внимание в современной классификации чистых помещений согласно ГОСТ Р 50766 - 95. Частицы с размером от 10 мкм и более задерживаются в верхних отделах дыхательных путей и выводятся из них.

Опасность микробного аэрозоля для здоровья людей обусловлено не только существованием аэрозольного механизма передачи при ряде инфекционных заболеваний. Микробный аэрозоль может также явиться причиной развития аллергии, а также интоксикаций (отравлений), связанных с ингаляцией эндотоксинов грамотрицательных бактерий, грамположительных бактерий и микотоксинов плесневых грибов. Кроме того, присутствие в воздухе микробных аэрозолей нежелательно при осуществлении ряда технологических процессов.

4.1 Методы забора проб материала

микробиологическое исследование воздух

Санитарно-микробиологическое исследование воздуха включает 4 этапа:

Отбор проб воздуха;

Обработку, транспортировку и хранение проб;

Выделение микроорганизмов из изучаемой пробы;

Идентификацию выделенных культур микроорганизмов;

Один из наиболее ответственных моментов, поскольку лежит в основе всего проводимого в дальнейшем исследовании.

Атмосферный воздух исследуют в жилой зоне на уровне 0,5-2,0 м от земли вблизи источников загрязнения, а также в зеленых зонах (парки, сады) -- для оценки их влияния на микрофлору воздуха.

В закрытых помещениях отбор проб проводят в 5-ти различных местах обследуемого помещения (по типу «конверта»): 4 точки отбора по углам помещения (на расстоянии 0,5 м от стен), а 5-я точка отбора -- в центре помещения. Пробы воздуха забирают на высоте 1,6-1,8 м от пола -- на уровне дыхания в жилых помещениях и на уровне коек -- в условиях больничных палат. Пробы воздуха необходимо отбирать днем в период активной деятельности человека, после влажной уборки и проветривания помещения.

При отборе проб воздуха для выделения микроорганизмов используются седиментационный и аспирационный методы.

Аспирационный метод связан с осаждением микробных частиц из воздуха на какую-либо поверхность.

Микробную обсемененность воздуха (ОМЧ) определяют по правилу (формуле) В. Л. Омелянского: на 100,0 см2 поверхности питательной среды за 5 минут оседает столько микроорганизмов, сколько их содержится в 10,0 л воздуха (10,0 дм3).

После соответствующего пересчета ОМЧ выражают в КОЕ бактерий на определенный объем исследуемого воздуха, поскольку считают, что каждая колония -- потомство жизнеспособного микроорганизма.

Седиментационный метод основан на происходящем под действием силы тяжести осаждении микроорганизмов на поверхность соответствующей плотной питательной среды.

Чашку с питательной средой (открытую) ставят на горизонтальную поверхность на высоте рабочего стола и оставляют на определенное время.

Затем чашку закрывают и инкубируют 18-24 часа, после чего подсчитывают количество выросших колоний.

Аспирационный метод основан на принудительном осаждении микроорганизмов на поверхность соответствующей плотной питательной среды.

При осуществлении этого метода возможно использование:

1. Пробоотборника бактериологического аэрозоля, принцип действия которого основан на электризации частиц исследуемого воздуха и последующем осаждении их на электроде противоположного знака.

2. Аппарата Кротова, принцип действия которого основан на чисто механической аспирации воздуха через щель в крышке прибора. расположенной над вращающейся поверхностью питательной среды в чашке Петри, вследствие чего происходит инерционное осаждение бактерий из воздуха на поверхность питательной среды.

Экологическое исследование микробной обсемененности объектов окружающей среды

Эколого-бактериологическое исследование микробной обсемененности предметов внешней среды предусматривает выявление стафилококка, синегнойной палочки, бактерий группы кишечных палочек и аэромонад (строго по показаниям). Забор проб с поверхностей различных объектов осуществляют методом смывов.

Взятие смывов производят стерильным ватным тампоном на палочках, вмонтированных в пробирки, или марлевыми салфетками, размером 5Ч5 см, простерилизованными в бумажных пакетах или в чашках Петри. Для увлажнения тампонов в пробирки с тампонами наливают по 2,0 мл стерильного физиологического раствора. Салфетку захватывают стерильным пинцетом, увлажняют физиологическим раствором из пробирки, после протирки исследуемый объект помещают в ту же пробирку.

При контроле мелких предметов смывы забирают с поверхности всего предмета. При контроле предметов с большой поверхностью смывы проводят в нескольких местах исследуемого предмета площадью примерно в 100,0-200,0 см 2 .

Заключение

Микробиологические исследования воздуха показали, что присутствие комнатных растений значительно снижает численность бактерий (среди которых могут быть условно-патогенные) и спор плесневых грибов, тогда как отдельно взятое проветривание не изменяет качественного состава микрофлоры и не так сильно снижает общую численность микроорганизмов. Следовательно, очищение воздуха в помещениях более эффективно с помощью комнатных растений, чем проветриванием помещений в течение 10 минут.

Санитарно-бактериологическое исследование воздуха имеет большое значение в хирургических отделениях больниц, родильных домах, где имеется опасность возникновения внутрибольничной инфекции. Обнаружение Staph, aureus в этих отделениях является недопустимым. Нарастание количества Staph, aureus определенных фаготипов следует рассматривать как грозный предвестник возможного появления госпитальной инфекции.

Выявление вирусов и патогенных бактерий из воздуха закрытых помещений проводят по эпидемиологическим показаниям при оценке эффективности обеззараживания воздуха, при контроле санитарно-микробиологического содержания больничных учреждений и т. д.

Для выявления микобактерий туберкулеза отбор проб производят при помощи прибора ПОВ-І, в котором в качестве улавливающей используют среду Школьниковой.

Эталоном чистоты атмосферного воздуха считают показатель бактериальной обсемененности в зеленой зоне (зеленая зона ВДНХ--350 микробов в 1 м 3). Пример значительного обсеменения воздуха -- места скопления людей и транспорта. Воздух операционных до начала операции должен содержать не более 500, а после нее -- не более 1000 микробов в 1 м3. Staph, aureus не должны обнаруживаться при исследовании 250 л воздуха. В предоперационных и перевязочных до начала работы количество микробов в 1 м3 не должно превышать 750. В больничных палатах летом число микробов должно быть менее 3500, а зимой -- менее 5000 в 1 м3. Здесь допускают наличие стафилококков в воздухе: летом -- 24, зимой -- 52 при исследовании 250 л воздуха.

Список использованных источников

1. Гусев М. В. Микробиология. Третье издание/ М. В. Гусев, Л. А.Минеева. -М.: Рыбари,2004. - 464 с.

2. Елинов Н.П. Основы промышленной биотехнологии./ Н.П. Елинов - М. - «Колос-Химия», 2004.-296 с.

3. Калунянц К.А. Оборудование микробиологических производств/ К.А. Калунянц [и др.].- М. - «Агропромиздат», 1987.-397 с.

4. Лабинская А. С. Микробиология с техникой микробиологических исследований./ Лабинская А. С.,- М, Медицина, 1978.-394 с.

Размещено на Allbest.ru

...

Подобные документы

    Особенности микрофлоры воздуха и почвы, кожи и респираторного тракта. Санитарная оценка воздуха. Эпифитные микроорганизмы растений. Определение микробного числа. Аспирационный метод (с помощью аппарата Кротова). Седиментационный (чашечный) метод Коха.

    презентация , добавлен 03.06.2014

    Гигиеническая характеристика физических факторов воздушной среды. Физические свойства атмосферного воздуха. Метеорологические факторы. Ионизация воздуха и атмосферное электричество. Изучение принципов гигиенического нормирования микроклимата помещений.

    презентация , добавлен 05.12.2013

    Седиментационный метод изучения микрофлоры воздуха. Определение микробного числа патогенных микроорганизмов. Результаты визуального обследования тестируемых помещений. Культуральные особенности микроорганизмов. Непатогенные бактерии, определение.

    курсовая работа , добавлен 28.09.2017

    Характеристика основных показателей микрофлоры почвы, воды, воздуха, тела человека и растительного сырья. Роль микроорганизмов в круговороте веществ в природе. Влияние факторов окружающей среды на микроорганизмы. Цели и задачи санитарной микробиологии.

    реферат , добавлен 12.06.2011

    Наиболее вероятные микроклиматические условия проведения спелеологических исследований по Ф. Тромбу. Условия пребывания под землей. Температура воздуха, атмосферное давление и относительная влажность воздуха в пещерах, анализ их целебного воздействия.

    реферат , добавлен 07.12.2012

    Санитарно-показательные микроорганизмы для почвы. Требования, предъявляемые к водопроводной воде. Микрофлора полости рта взрослого. Санитарно-гигиеническое состояние воздуха. Микроорганизмы промежности. Химические факторы, действующие на бактерии.

    тест , добавлен 17.03.2017

    Санитарно-бактериологическое исследование воздуха школьных помещений. Основные методы и техника посева материалов и культур микробов. Методы исследования воздуха в закрытых помещениях. Количество микроорганизмов, содержащееся в воздухе коридора и класса.

    научная работа , добавлен 22.11.2009

    Выбросы загрязняющих веществ и состояние атмосферного воздуха. Результаты государственного контроля за состоянием атмосферного воздуха. Состояние выполнения мероприятий по охране атмосферного воздуха на предприятиях. Кислотные дожди. Охрана.

    реферат , добавлен 13.11.2002

    Географические особенности Арктики. Свойства и условия обитания облигатных психрофилов, изучение сообществ палеоорганизмов вечной мерзлоты. Численность жизнеспособной микрофлоры в мерзлых породах, ее исследование методом накопительного культивирования.

    реферат , добавлен 29.03.2012

    Определение и анализ главных особенностей и сущности эпифитной микрофлоры – микроорганизмов, обитающих на поверхности надземных частей растений и в зоне их ризосферы. Ознакомление с характерными чертами, присущими представителям эпифитной микрофлоры.