Электрооборудование

Большепролетные здания и сооружения определение. Большепролетные здания

Большепролетные здания и сооружения определение. Большепролетные здания

Общие положения

Большепролетными считаются здания, у которых расстояние между опорами (несущих конструкций) покрытий составляет более 40 м.

К таким зданиям относятся:

− цехи заводов тяжелого машиностроения;

− сборочные цехи судостроительных, машиностроительных заводов, ангары и т.п.;

− театры, выставочные залы, крытые стадионы, вокзалы, крытые стоянки автотранспорта и гаражи.

1. Особенности большепролетных зданий:

а) большие размеры зданий в плане, превосходящие радиус действия монтажных кранов;

б) специальные способы монтажа элементов покрытия;

в) наличие в отдельных случаях под покрытием больших частей и конструкций здания, этажерок, трибун крытых стадионов, фундаментов под оборудование, громоздкого оборудования и т.п.

2. Методы возведения большепролетных зданий

Применяются следующие методы:

а) открытый;

б) закрытый;

в) комбинированный.

2.1. Открытый метод заключается в том, что сначала возводят все конструкции здания, находящиеся под покрытием, т.е.:

− этажерки (одно – или многоярусное сооружение под покрытием промзданий для технологического оборудования, контор и т.п.);

− конструкции для размещения зрителей (в театрах, цирках, крытых стадионах и т.п.);

− фундаменты под оборудование;

− иногда громоздкое технологическое оборудование.

Затем устраивают покрытие.

2.2. Закрытый метод состоит в том, что сначала устраняют покрытие, а потом возводят все конструкции, находящиеся под ним (рис. 18).

Рис. 18. Схема возведения спортзала (поперечный разрез):

1 – вертикальные несущие элементы; 2 – мембранное покрытие; 3 – встроенные помещения с трибунами; 4 – передвижной стреловой кран

2.3. Комбинированный метод состоит в том, что на отдельных участках (захватках) на каждом выполняют сначала все конструкции, находящиеся ниже покрытия, а потом устраивают покрытие (рис. 19).


Рис. 19. Фрагмент стройгенплана:

1 – смонтированное покрытие здания; 2 – этажерка; 3 – фундаменты под оборудование; 4 – подкрановые пути; 5 – башенный кран

Применение методов возведения большепролетных зданий зависит от следующих основных факторов:

− от возможности расположения грузоподъемных кранов в плане по отношению к возводимому зданию (вне здания или в плане);

− от наличия и возможности применения кранбалок (мостовых кранов) для возведения внутренних частей конструкций здания;

− от возможности устройства покрытий при наличии выполненных частей здания и конструкций, находящихся под покрытием.

При возведении большепролетных зданий особую трудность составляет устройство покрытий (оболочек, арочных, купольных, вантовых, мембранных).

Технология устройства остальных конструктивных элементов обычно не составляет трудностей. Производство работ по их устройству расмотрено в курсе "Технология строительных процессов".

Рассмотрена в курсе ТСП и не будет рассматриваться в курсе ТВЗ и С и технология устройства балочных покрытий.

3.1.3.1. ТВЗ в виде оболочек

За последние годы разработано и внедрено большое количество тонкостенных пространственных железобетонных конструкций покрытий в виде оболочек, складок, шатров и т.п. Эффективность таких конструкций обусловлена более экономным расходом материалов, меньшим весом и новыми архитектурными качествами. Уже первый опыт эксплуатации таких сооружений позволил обнаружить два основных достоинства пространственных тонкостенных железобетонных покрытий:

− экономичность, являющуюся следствием более полного, по сравнению с плоскостными системами, использования свойств бетона и стали;

− возможность рационального применения железобетона для покрытия больших площадей без промежуточных опор.

Железобетонные оболочки по методу возведения разделяют на монолитные, сборочно-монолитные и сборные. Монолитные оболочки целиком бетонируются на месте строительства на стационарной или передвижной опалубке. Сборно-монолитные оболочки могут состоять из сборных контурных элементов и монолитной скорлупы, бетонируемой на передвижной опалубке, чаще всего подвешиваемой к смонтированным диафрагмам или бортовым элементам. Сборные оболочки собирают из отдельных, заранее изготовленных элементов, которые после установки их на место стыкуются между собой; причем соединения должны обеспечить надежную передачу усилий от одного элемента к другому и работу сборной конструкции как единой пространственной системы.

Сборные оболочки могут быть разделены на следующие элементы: плоские и криволинейные плиты (гладкие или ребристые); диафрагмы и бортовые элементы.

Диафрагмы и бортовые элементы могут быть как железобетонными, так и стальными. Следует отметить, что выбор конструктивных решений оболочек находится в тесной взаимосвязи со способами строительства.

Оболочки двоякой (положительной гауссовой) кривизны , квадратные в плане, образуются из сборных железобетонных ребристых скорлуп и контурных ферм . Геометрическое очертание оболочек двоякой кривизны создает выгодные условия статической работы, так как 80 % площади скорлупы оболочки работает только на сжатие и лишь в угловых зонах имеются растягивающие усилия. Скорлупа оболочки имеет форму многогранника с ромбовидными гранями. Поскольку плиты плоские, квадратные, ромбовидная форма граней достигается замоноличиванием швов между ними. Средние типовые плиты формуют размером 2970×2970 мм, толщиной 25, 30 и 40 мм, с диагональными ребрами высотой 200 мм, а с бортовыми – 80 мм. Контурные и угловые плиты имеют диагональные и бортовые ребра той же высоты, что и средние, а у бортовых ребер, примыкающих к краю оболочки, сделаны утолщения и пазы для выпусков арматуры контурных ферм. Соединение плит между собой осуществляется сваркой выпусков каркасов диагональных ребер и замоноличиванием швов между плитами. В угловых плитах оставлен треугольный вырез, который замоноличивается бетоном.

Контурные элементы оболочки изготавливают в виде цельных ферм или предварительно напряженных раскосных полуферм, стык которых в верхнем поясе выполняется сваркой накладок, а в нижнем – сваркой выпусков стержневой арматуры с последующим их обетонированием. Оболочки целесообразно использовать для покрытия больших площадей без промежуточных опор. Железобетонные оболочки, которым практически можно придать любую форму, способны обогатить архитектурные решения как общественных, так и производственных зданий.



На рис. 20 представлены геометрические схемы сборных железобетонных оболочек, прямоугольных в плане.

Рис. 20. Геометрические схемы оболочек:

а – разрезка плоскостями, параллельными контуру; б – радиально-кольцевая разрезка; в – разрезка на ромбовидные плоские плиты

На рис. 21 представлены геометрические схемы покрытия зданий с прямоугольной сеткой колонн оболочками из цилиндрических панелей.

В зависимости от типа оболочки, размера ее элементов, а также размеров оболочки в плане монтаж осуществляют различными методами, отличающимися в основном наличием или отсутствием монтажных лесов.


Рис. 21. Варианты образования сборных цилиндрических оболочек:

а – из криволинейных ребристых панелей с бортовыми элементами; б – то же с одним бортовым элементом; в – из плоских ребристых или гладких плит, бортовых балок и диафрагм; г – из криволинейных панелей больших размеров, бортовых балок и диафрагм; д – из арок или ферм и сводчатых или плоских ребристых панелей (короткая оболочка)

Рассмотрим пример возведения двухпролетного здания с покрытием из восьми квадратных в плане оболочек двоякой положительной гауссовой кривизны. Габариты элементов конструкций покрытия представлены на рис. 22, а . Здание имеет два пролета, каждый из которых содержит по четыре ячейки размером 36 × 36 м (рис. 22, б ).

Значительный расход металла на опорные леса при монтаже оболочек двоякой кривизны снижает эффективность применения этих прогрессивных конструкций. Поэтому для возведения таких оболочек размером до 36 × 36 м применяют катучие телескопические кондукторы с сетчатыми кружалами (рис. 22, в ).

Рассматриваемое здание является однородным объектом. Монтаж оболочек покрытия включает следующие процессы: 1) установку (перестановку) кондуктора; 2) монтаж контурных ферм и панелей (установку, укладку, выверку, сварку закладных деталей); 3) замоноличивание оболочки (заливку швов).


Рис. 22. Возведение здания с покрытием из сборных оболочек:

а – конструкция оболочки покрытия; б – схема расчленения здания на участки; в – схема работы кондуктора; г – последовательность монтажа элементов покрытия одного участка; д – последовательность возведения покрытия по участкам здания; I–II – номера пролетов; 1 – контурные фермы оболочки, состоящие из двух полуферм; 2 – плита покрытия размером 3×3 м; 3 – колонны здания; 4 – телескопические башни кондуктора; 5 – сетчатые кружала кондуктора; 6 – шарнирные опоры кондуктора для временного крепления элементов контурных ферм; 7 – 17 – последовательность монтажа контурных ферм и плит покрытия.

Поскольку при монтаже покрытия используют катучий кондуктор, перемещаемый лишь после выдерживания раствора и бетона, то за монтажный участок принимается одна ячейка пролета (рис. 22, б ).

Монтаж панелей оболочки начинают с наружных, опирающихся на кондуктор и контурную ферму, затем монтируют остальные панели оболочки (рис. 22, г , д ).

3.1.3.2. Технология возведения зданий с купольными покрытиями

В зависимости от конструктивного решения монтаж куполов выполняют с использованием временной опоры, навесным способом или в целом виде.

Сферические купола возводят кольцевыми ярусами из сборных железобетонных панелей навесным способом. Каждый из кольцевых ярусов после полной сборки обладает статической устойчивостью и несущей способностью и служит основанием для вышележащего яруса. Таким способом монтируют сборные железобетонные купола крытых рынков.

Панели поднимают башенным краном, установленным в центре здания. Временное крепление панелей каждого яруса осуществляют при помощи инвентарного приспособления (рис. 23, б ) в виде стойки с оттяжками и стяжной муфтой. Число таких приспособлений зависит от числа панелей в кольце каждого яруса.

Работы производят с инвентарных подмостей (рис. 23, в ), устраиваемых снаружи купола и перемещаемых по ходу монтажа. Смежные панели соединяют между собой болтами. Швы между панелями заделывают цементным раствором, который сначала укладывают по краям шва, а затем растворонасосом нагнетают в его внутреннюю полость. По верхней кромке панелей собираемого кольца устраивают железобетонный пояс. После того как раствор швов и бетон пояса приобретут требуемую прочность, стойки с оттяжками снимают, а цикл монтажа повторяют на следующем ярусе.

Сборные купола навесным способом монтируют также последовательной сборкой кольцевых поясов при помощи передвижной металлической фермы-шаблона и стоек с подвесками для удерживания сборных плит (рис. 23, г ). Этот способ применяют при монтаже сборных железобетонных куполов цирков.

Для монтажа купола в центре здания устанавливают башенный кран. На башню крана и кольцевой рельсовый путь, расположенный по железобетонному карнизу здания, устанавливают передвижную ферму-шаблон. Башню крана для обеспечения большей жесткости расчаливают четырьмя расчалками. При недостаточном вылете стрелы и грузоподъемности одного крана на кольцевом пути возле здания устанавливают второй кран.

Сборные панели купола монтируют в следующем порядке. Каждую панель в наклонном положении, соответствующем ее проектному положению в покрытии, поднимают башенным краном и устанавливают нижними углами на наклонно приваренные накладки узла, а верхними - на установочные винты фермы-шаблона.


Рис. 23. Возведение зданий с купольными покрытиями:

а – конструкция купола; б – схема временного крепления панелей купола; в – схема крепления подмостей для возведения купола; г – схема монтажа купола при помощи передвижной фермы-шаблона; 1 – нижнее опорное кольцо; 2 – панели; 3 – верхнее опорное кольцо; 4 – стойка инвентарного приспособления; 5 – оттяжка; 6 – стяжная муфта; 7 – монтируемая панель; 8 – смонтированные панели; 9 – подкос с отверстиями для изменения уклона кронштейна подмостей; 10 – стойка для перил; 11 – ригель кронштейна; 12 – проушина для крепления кронштейна к панели; 13 – монтажные стойки; 14 – расчалки стоек; 15 – подвески для удержания плит; 16 – ферма-шаблон; 17 – расчалки крана; 18 – панелевоз

Далее производят выверку верхних кромок закладных деталей верхних углов панели, после чего стропы снимают, панель крепят подвесками к монтажным стойкам и подвески натягивают при помощи стяжных муфт. Затем установочные винты фермы-шаблона опускают на 100 – 150 мм и передвигают ферму-шаблон в новое положение для монтажа смежной панели. После монтажа всех панелей пояса и сварки узлов стыки замоноличивают бетоном.

Следующий пояс купола монтируют после приобретения бетоном стыков нижележащего пояса требуемой прочности. По окончании монтажа верхнего пояса снимают подвески с панелей нижележащего пояса.

В строительстве применяют также метод подъема в целом виде забетонированных на земле покрытий диаметром 62 м при помощи системы домкратов, установленных на колоннах.

3.1.3.3. Технология возведения зданий с вантовыми покрытиями

Наиболее ответственным процессом при возведении таких зданий является устройство покрытия. Состав и последовательность выполнения монтажа вантовых покрытий зависит от их конструктивной схемы. Ведущим и наиболее сложным процессом при этом является монтаж вантовой сети.

Конструкция висячего покрытия с системой вантов состоит из монолитного железобетонного опорного контура; закрепленной на опорном контуре вантовой сети; сборных железобетонных плит, уложенных на вантовой сети.

После проектного натяжения вантовой сети и замоноличивания швов между плитами и вантами оболочка работает как единая монолитная конструкция.

Вантовая сеть состоит из системы продольных и поперечных вант, расположенных по главным направлениям поверхности оболочки под прямым углом друг к другу. В опорном контуре ванты закрепляют при помощи анкеров, состоящих из гильз и клиньев, с помощью которых обжимают концы каждого ванта.

Вантовую сеть оболочки монтируют в следующей последовательности. Каждую ванту с помощью крана устанавливают на место в два приема. Сначала с помощью крана один ее конец, снятый с барабана траверсой, подают к месту установки. Анкер ванты протягивают сквозь закладную деталь в опорном контуре, потом закрепляют и раскатывают оставшуюся на барабане часть ванты. После этого двумя кранами поднимают ванту до отметки опорного контура, одновременно подтягивая лебедкой второй анкер к опорному контуру (рис. 24, а ). Анкер протягивают через закладную деталь в опорном контуре и закрепляют гайкой с шайбой. Ванты поднимают вместе со специальными подвесками и контрольными грузами для последующей геодезической выверки.


Рис. 24. Возведение здания с вантовым покрытием:

а – схема подъема рабочей ванты; б – схема взаимоперпендикулярного симметричного натяжения вант; в – схема выверки продольных вант; г – детали окончательного крепления вант; 1 – электролебедка; 2 – оттяжка; 3 – монолитный железобетонный опорный контур; 4 – поднимаемая ванта; 5 – траверса; 6 – нивелир

По окончании монтажа продольных вант и предварительного натяжения их на усилие 29,420 – 49,033 кН (3 – 5 тс) выполняют геодезическую поверку их положения путем определения координат точек вантовой сети. Заранее составляют таблицы, в которых для каждой ванты указывают расстояние точек крепления контрольных грузов на гильзе анкера от начала отсчета. В этих точках на проволоке подвешивают контрольные грузы массой 500 кг. Длины подвесок различны и подсчитаны заранее.

При правильном провисании рабочих вант контрольные грузы (риски на них) должны находиться на одной отметке.

После выверки положения продольных вант устанавливают поперечные. Места их пересечения с рабочими вантами закрепляют постоянными сжимами. Одновременно с этим устанавливают временные оттяжки, закрепляющие положение мест пересечения вант. Затем повторно проверяют соответствие проекту поверхности вантовой сети. После этого вантовую сеть натягивают в три этапа при помощи 100-тонных гидравлических домкратов и траверс, присоединенных к гильзоклиновым анкерам.

Последовательность натяжения определяют из условий натяжения вант группами, одновременного натяжения групп в перпендикулярном направлении, симметричности натяжения групп относительно оси здания.

По окончании второго этапа натяжения, т.е. при достижении усилий, определенных проектом, на вантовую сеть укладывают сборные железобетонные плиты в направлении от нижней отметки к верхней. При этом на плитах до их подъема устанавливают опалубку для замоноличивания швов.

3.1.3.4. Технология возведения зданий с мембранными покрытиями

К металлическим висячим покрытиям относят тонколистовые мембранные, совмещающие несущие и ограждающие функции.

Достоинствами мембранных покрытий являются их высокая технологичность изготовления и монтажа, а также характер работы покрытия на двухосное растяжение, что позволяет перекрывать 200-метровые пролеты стальной мембраной толщиной всего 2 мм.

Висячие растянутые элементы обычно закрепляют за жесткие опорные конструкции, которые могут быть в виде замкнутого контура (кольца, овала, прямоугольника), опирающегося на колонны.

Рассмотрим технологию монтажа мембранного покрытия на примере покрытия спорткомплекса “Олимпийский” в Москве.

Спортивный комплекс "Олимпийский" решен в виде пространственной конструкции эллиптической формы 183×224 м. По наружному контуру эллипса с шагом 20 м расположены 32 стальные решетчатые колонны, жестко связанные с наружным опорным кольцом (сечением 5×1,75 м). К наружному кольцу подвешено мембранное покрытие – оболочка со стрелой провисания 12 м. Покрытие имеет 64 радиально расположенные с шагом по наружному контуру 10 м стабилизирующие фермы высотой 2,5 м, соединенные кольцевыми элементами – прогонами. Лепестки мембраны крепили между собой и к радиальным элементам "постели" высокопрочными болтами. В центре мембрана замыкается внутренним металлическим кольцом эллиптической формы размером 24×30 м. Мембранное покрытие крепилось к наружному и внутреннему кольцам высокопрочными болтами и сваркой.

Монтаж элементов мембранного покрытия производили крупными пространственными блоками башенным краном БК – 1000 и двумя шеврами-установщиками (грузоподъемностью 50 т), перемещавшимися по наружному опорному кольцу. По длинной оси на двух стендах производилась сборка одновременно двух блоков.

Все 64 стабилизирующие фермы покрытия были объёдинены попарно в 32 блока девяти типоразмеров. Один такой блок состоял из двух радиальных стабилизирующих ферм, прогонов по верхним и нижним поясам, вертикальных и горизонтальных связей. В блок были вмонтированы трубопроводы систем вентиляции и кондиционирования. Масса блоков стабилизирующих ферм в сборе достигала 43 т.

Поднимали блоки покрытия с помощью траверсы-распорки, которая воспринимала усилие распора от стабилизирующих ферм (рис. 25).

Перед подъемом блоков ферм выполняли предварительное напряжение верхнего пояса каждой фермы на усилие около 1300 кН (210 МПа) и закрепляли их при этом усилии к опорным кольцам покрытия.

Установка преднапряженных блоков производилась поэтапно путем симметричной установки нескольких блоков по радиусам одного диаметра. После монтажа восьми симметрично установленных блоков вместе с траверсами-распорками производилось одновременное их раскружаливание с передачей усилий распора равномерно наружному и внутреннему кольцам.

Блок стабилизирующих ферм поднимали краном БК – 1000 и шевром-установщиком примерно на 1 м выше наружного кольца. Затем шевр перемещали к месту установки данного блока. Расстроповку блока производили только после его полного проектного закрепления на внутреннем и наружном кольцах.

Мембранная оболочка массой 1569 т состояла из 64 секторных лепестков. Лепестки мембраны монтировали после окончания монтажа системы стабилизации и закрепляли высокопрочными болтами диаметром 24 мм.

Полотнища мембраны поступали на монтажную площадку в виде рулонов. Стеллажи для раскатывания располагались на месте сборки стабилизирующих ферм.


Рис. 25. Схема монтажа покрытия укрупненными блоками:

а – план; б – разрез; 1 – шевр-установщик; 2 – стенд для укрупнительной сборки блоков; 3 – траверса-распорка для подъема блока и предварительного напряжения верхних поясов ферм с помощью рычажного устройства (5); 4 – укрупненный блок; 6 – монтажный кран БК – 1000; 7 – центральное опорное кольцо; 8 – центральная временная опора; I – V – последовательность монтажа блоков и демонтажа траверс-распорок

Монтаж лепестков выполняли в последовательности установки стабилизирующих ферм. Натяжение лепестков мембраны осуществляли двумя гидравлическими домкратами усилием по 250 кН каждый.

Параллельно с укладкой и натяжением лепестков мембраны вели сверление отверстий и установку высокопрочных болтов (97 тыс. отверстий диаметром 27 мм). После сборки и проектного закрепления всех элементов покрытия производилось его раскружаливание, т.е. освобождение центральной опоры и плавное включение в работу всей пространственной конструкции.

Современные инженерные и строительные технологии позволяют возводить уникальные большепролетные сооружения и пространственные конструкции, которые имеют расстояния между несущими опорами более 40 метров, делая их надежными и функциональными. Чаще всего это бывают заводские машиностроительные и судостроительные цеха, ангары, автостоянки, стадионы, здания вокзалов, театров и галерей.

Большепролетные металлические конструкции имеют упругость, позволяют создавать разнообразные виды сопряжений для построения выразительных геометрических форм и архитектурных решений любой сложности. При этом они содержат множество концентраторов напряжений. Правильное и равномерное распределение высокой несущей нагрузки между конструктивными элементами важно, поскольку под действием естественной тяжести конструкции и вилянием внешних факторов могут возникать опасные повреждения.

Сооружения, в основе которых заложены большепролетные балки, при строительстве и в процессе эксплуатации подвержены особенному риску возникновения деформаций и трещин, в последующем ведущих к разрушению. Поэтому требуют постоянного мониторинга в реальном времени и наблюдения за их состоянием для обеспечения условий безопасности.

Типичные причины, которые вызывают проблемы большепролетных зданий:

  • неграмотно проведенные геофизические и геодезические изыскания, замена экспериментальных расчетов моделированием;
  • ошибки проектирования, просчеты при определении нагрузок и точек расположения геометрических центров, смещения осей, нарушения принципов прямолинейности или жесткости элементов;
  • нарушение технологий изготовления или правил монтажа конструкций, неправильные узловые соединения, использование неподходящих строительных материалов (например, выбор вида стали, непригодного для конкретных условий);
  • неравномерные осадочные процессы, влияющие на устойчивость и целостность фундаментов, опорных элементов, сводов и перекрытий;
  • неправильная эксплуатация, ненормированные нагрузки и аварийные воздействия;
  • временной износ;
  • влияние неблагоприятных природных факторов (ветрового давления, смещений почвенных пластов и движения грунтовых вод, сейсмических процессов, температурно-влажностных условий, в которых происходит ржавление металлических элементов конструкций, разрушение бетона и т.д.);
  • вибрации, создаваемые движением транспорта и ведущимися вблизи строительными работами.

В результате влияния этих факторов и причин происходят деформации основных опор и потеря ими несущих способностей, прогибы и смещения пролетных балок, прогрессирующие разрушения. Это создает опасность для жизни людей и приводит к экономическим потерям, связанным с необходимостью компенсации ущерба от аварий и проведением ремонта.

Мониторинг состояния объектов

Мониторинг большепролетных зданий и сооружений позволяет отслеживать физический износ, снижение несущих способностей инженерных конструкций, выявлять неблагоприятные изменения, появление дефектов и повреждений, обнаруживать опасные напряженно-деформационные состояния, контролировать их выход за предусмотренные проектом предельные значения, вовремя замечать превышения установленных коэффициентов надежности и предельно допустимых величин отклонений наблюдаемых параметров.

Мониторинг осуществляется при помощи специальных высокоточных измерительных инструментов, контрольных приборов, регистраторов значимых параметров и показателей надежности, улавливающих электромагнитные и ультразвуковые колебания, датчиков и геодезических маркеров, компьютеризированных диспетчерских пультов, автоматического оборудования и сигнальных систем оповещения.
Большепролетные здания оборудуются инженерными системами мониторинга и управления, которые информационно связаны с дежурно-диспетчерскими службами МЧС. Такие системы позволяют производить сбор данных одновременно от многих передатчиков и по разным параметрам. Эта информация стекается в единый центр, интегрируется, анализируется при помощи заданных алгоритмов и в итоге выдается схематично и наглядно оформленный результат, свидетельствующий о состоянии исследуемой конструкции.

На основе этого специалисты по мониторингу могут составлять заключения, прогнозы и отчеты с обоснованной диагностикой объектов, рекомендациями и программами эффективных мер по устранению имеющихся дефектов и дестабилизирующих факторов, минимизации рисков и угроз наступления аварийных ситуаций, их избежанию и предотвращению ущерба. В случае возникновения чрезвычайных и нештатных ситуаций, о них оперативно информируются спасательные службы.

Специалисты по инженерно-строительному мониторингу

Компания СМИС Эксперт разрабатывает системные решения для проведения оценки уязвимости и диагностики проблем большепролетных сооружений, мониторингового сопровождения строительства и эксплуатации зданий различного назначения. Имеем большой опыт и высокую квалификацию специалистов. Используем современные научные знания и инновационные технологии. Обеспечиваем профессиональный геодезический мониторинг и исследование любых видов объектов для установления степени их надежности, безопасности и долговечности. Реализуем высокоточное измерительное оборудование и приборы.

КОНСПЕКТ ЛЕКЦИЙ

Макеевка 2011г.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЕЖИ И СПОРТА УКРАИНЫ

ДОНБАССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ

Кафедра “Экономика предприятий”

Разработал: к.э.н., доц. Захарченко Д.А.

КОНСПЕКТ ЛЕКЦИЙ

по курсу «Основы строительной отрасли»

для студентов специальности 6.030504 «Экономика предприятий»

№ кода _______

Утверждено на заседании кафедры

«Экономика предприятий»

ПРОТОКОЛ № __ от _______2011 р.

Макеевка 2011г.

ТЕМА 4. БОЛЬШЕПРОЛЕТНЫЕ ЗДАНИЯ И СООРУЖЕНИЯ

К большепролетным сооружениям относят такие, которые имеют пролеты более 40-80 м. Сравнительно недавно такие сооружения считались уникальными и строились крайне редко, в настоящее время быстрое развитие науки и техники, а также большая потребность в таких сооружениях в промышленности и сфере досуга и развлечения предопределили интенсивное строительство таких сооружений во многих странах.

Особый интерес представляют пространственные конструкции, которые состоят не из отдельных, независимых несущих элементов, передающих нагрузку друг друга, а представляют единую комплексную систему работающих частей конструкции.

Такой пространственный характер конструкций, широко внедряемый в строительство во всем мире - символ строительной техники 20в. И хотя некоторые виды пространственных конструкций - купола, крестовые и своды - были известны с древности, однако ни по применяемости материалов, ни по конструктивным решениям они не отвечают современным требованиям строительства, так как хотя и перекрывали значительные пролеты, но при этом были чрезвычайно тяжелы и массивны.

В пространственных конструкциях привлекает, и их способность оптимально удовлетворять функциональным и эстетическим требованиям архитектуры. Масштабы перекрываемых пролетов, возможность осуществлять гибкую планировку, разнообразие геометрических форм, материалов, архитектурная выразительность - вот далеко не полный перечень особенностей этих конструкций.

Сочетание функционального, технического и художественно-эстетического обеспечивает пространственным конструкциям широкую перспективу, не говоря уже о том, что их применение позволяет получить огромную экономию строительных материалов - на 20-30% снизить материалоемкость зданий и сооружений.


К плоскостным большепролетным сооружениям относятся балки, рамы, фермы, арки. Плоскостные конструкции работают под нагрузкой автономно, каждая в своей плоскости. Несущий элемент плоскостных конструкций, перекрывающих какую-то площадь здания (плита, балка, ферма) работает самостоятельно не участвуют в работе элементов, к которым он примыкает. Это обуславливает меньшую пространственную жесткость и несущую способность плоскостных элементов по сравнению с пространственными, а также их более высокую ресурсоемкость в первую очередь повышенный расход материалов.

Рис. 4.1. Конструктивные решения большепролетных конструкций

а - плоские конструкции; б - пространственные конструкции; в - висячие конструкции; г - пневматические конструкции; 1- фермы; 2 - рамы; 3-4 шарнирные арки; 5- цилиндрические оболочки; 6- оболочки двоякой кривизны; 7- купола; 8- структуры; 9- вантовые конструкции; 10- мембранные конструкции; 11- тентовые конструкции; 12- пневмоопорные конструкции; 13- пневмокаркасные конструкции;

Монтаж рам сплошной конструкции производят двумя самоходными стреловыми кранами. Сначала на фундамент устанавливают стойки рамы с частью ригеля , опирающиеся на временную опору, а затем монтируют средний участок ригеля. Соединение частей ригеля производится на временных опорах сваркой или крепкой. После монтажа первой рамы конструкции расчаливают с помощью растяжек.

В ряде случаев рамные конструкции целесообразно монтировать методом надвижки. Такой метод применяют, если рамные конструкции невозможно сразу установить в проектное положение (внутри ведутся работы либо уже возведены конструкции, не позволяющие расположить краны).

Блок собирают в торце здания в специальном кондукторе из 2-3 или 4 ферм. Собранный и закрепленный блок по рельсовым путям поднимают в проектное положение. Устанавливают при помощи домкратов или с помощью легких кранов.

Арочные конструкции бывают 2-х типов: в виде 2-х шарнирной арки с затяжкой и 3-х шарнирной арки. При монтаже арочных конструкций, имеющих несущую часть в виде двухшарнирной арки, производится аналогично монтажу рамных конструкций с помощью самоходных стреловых кранов . Основное требование - это высокая точность монтажа, гарантирующая совмещение пятого (опорного) шарнира с опорой.

Монтаж трехшарнирных арок отличается некоторыми особенностями, связанными с наличием верхнего шарнира. Сборка последнего выполняется при помощи временной монтажной опоры, устанавливаемой посередине пролета. Монтаж производиться методом вертикального подъема, методами скольжения или поворота.

Рис. 4.3. Монтаж рам

а - монтаж целиком двумя кранами; б - монтаж рам частями с использованием временных опор; в - монтаж рам методом поворота; 1-монтажный кран; 2-рама в сборе; 3-части рамы; 4-временные опоры; 5-лебедки; 6-монтажные стрелы.

Каждую полуарку стропят у центра тяжести и устанавливают так, чтобы пятовый шарнир был заведен на опору, а второй конец на временную опору. То же с другой полуаркой. Вращением в пятовом шарнире достигается совмещением осей замковых отверстий верхнего шарнира.

В пространственных конструкциях все элементы связаны между собой и участвуют в работе. Это приводит к значительному снижению расхода металла на единицу площади. Однако до последнего времени такие пространственные системы (купольные, вантовые, структурные, оболочки) не получали развития из-за высокой трудоемкости изготовления и монтажа.

Рис. 4.4. Монтаж купола с помощью временной центральной опоры

А - система разрезки купола; Б - монтаж купола; 1-временная опора с растяжками; 2-радиальнае панели; 3-опорное кольцо;

Купольные системы монтируются из отдельных стержней или из отдельных пластин. В зависимости от конструктивного решения, монтаж купольных конструкций может быть выполнен и с использованием временной стационарной опоры, навесным способом или в целом виде.

Сферические купола возводят кольцевыми ярусами, навесным способом. Каждый такой ярус обладает после полной сборки статистической устойчивостью и несущей способностью и служит основанием для вышележащего яруса. Сборные купола могут монтироваться при помощи кондукторных устройств и временных креплений - купол цирка в Киеве, или купол целиком собирается на земле и затем поднимается на проектный горизонт краном, пневмотранспортом или подъемником. Используется метод подращивания снизу.

Висячие конструкции стали применять со 2-й половины 19 века. И одним из первых примеров является покрытие павильона Всероссийской Нижегородской ярмарки, выполненное в 1896г. выдающимся советским инженером Шуховым .

Опыт применения таких систем доказал их прогрессивность, поскольку они позволяют максимально использовать высокопрочные стали и легкие ограждающие конструкции из пластиков и алюминиевых сплавов, что дает возможность создавать покрытия значительных пролетов.

Рис. 4.5. Монтаж висячих конструкций

1-башенный кран; 2-траверса; 3-тросовая полуферма; 4-центральный барабан; 5-временная опора; 6-смонтированная полуферма; 7- опорное кольцо.

В последнее время широкое распространение получили рамные висячие конструкции. Особенность устройства висячих конструкций заключается в том, что вначале возводятся несущие опоры, на которые укладывается опорный контур, воспринимающий натяжение от нитей вант. После их полной раскладки, покрытие загружают временной нагрузкой с учетом полной расчетной нагрузки. Такой прием предварительной напряженности исключает появление трещин в оболочке после полной ее нагрузки во время эксплуатации.

Разновидностью висячих вантовых конструкций являются мембранные покрытия. Мембранное покрытие представляет собой висячую систему в виде тонкой металлической листовой конструкции натянутой на железобетонный опорный контур. Один конец рулона закрепляется на опорном контуре, а рулон при помощи специального траверса краном разматывают на всю длину, натягивают лебедками и закрепляют на противоположном участке опорного контура.

Недостатком мембранных покрытий является необходимость сварки тонких листов по длине и монтажных элементов между собой с нахлестом в 50 мм. При этом практически невозможно получить сваркой шов равнопрочный с основным металлом, поэтому толщина листа искусственно завышается. Эта проблема в какой-то мере решается системой переплетенных лент из алюминиевых сплавов .

Первые длинные цилиндрические оболочки впервые были применены в 1928г. в Харькове при сооружении почтамта.

Длинные цилиндрические оболочки поставляются в полностью законченном виде или укрупняют по месту. Вес монтажных элементов 3х12 около 4 тонн. До подъема производится укрупнение в передвижном кондукторе двух плит вместе с затяжкой в один элемент. При укрупнении производят сварку закладных деталей в стыке, натяжение затяжки и замоноличивание швов.

Установив 8 укрупненных секций, образующих пролет 24м, их выверяют, чтобы совпадали и отверстия, далее сваривают все закладные детали и выпуски продольной арматуры , производят натяжение арматуры и бетонирование швов. После выдержки бетона оболочку раскружаливают и переставляют подмости.

В строительной практике пространственные, перекрестные, ребристые и стержневые конструкции обычно объединяют под названием структурные конструкции.

Перекрестные системы конструктивных различных форм покрытий с прямоугольными и диагональными решетками получили широкое распространение сравнительно недавно со второй половины 20 века в таких странах как США, Германия, Канада, Англия, бывший СССР.

Определенное время структурные конструкции не получали широкого развития из-за высокой трудоемкости изготовления и особенностей монтажа конструкции. Усовершенствование конструкции, особенно с использованием ЭВМ, позволило обеспечит переход на поточное их изготовление, снизить трудоемкость их расчета, повысить его точность и, следовательно, надежность.

Рис.4.6. Покрытие здания из крупноразмерных плит

1-плита размером 3х24м; 2-зенитный фонарь; 3-подстропильная ферма; 4- колонна.

В основе перекрестно-стержневых систем лежит опорная геометрическая форма. Отличительная особенность разных типов структурных конструкций - пространственный узел сопряжения стержней, который и определяет в значительной мере трудоемкость изготовления и сборки этих конструкций.

Структурные конструкции обладают рядом преимуществ по сравнению с традиционными плоскостными решениями в виде рам и балочных конструкций:

  • являются сборно-разборными и могут использоваться многократно;
  • могут изготавливаться на поточных автоматизированных линиях, чему способствует высокая типизация и унификация структурных элементов (часто необходим один тип стержней и один тип узла);
  • сборка не требует высокой квалификации;
  • имеют компактную упаковку и удобны при перевозке.

Наряду с отмеченными преимуществами структурные конструкции имеют и ряд недостатков:

  • укрупнительная сборка требует применения значительного объема ручного труда;
  • ограниченная несущая способность отдельных типов конструкций;
  • низкая заводская готовность поступающих на монтаж конструкций.

Пневмоконструкции используются для временного укрытия или для использования в каких-то вспомогательных целях, например в качестве опорных конструкций при возведении оболочек и других пространственных конструкций.

Пневматические покрытия могут быть 2-х видов - воздухоопрные и воздухонесущие. В первом случае небольшое избыточное давление мягкой оболочки сооружения обеспечивает получение необходимой формы. И эта форма будет сохраняться, пока будет поддерживаться подача воздуха и необходимое избыточное давление.

Во втором случае - несущий конструкцией служат заполненные воздухом трубы из эластичного материала, образующие как бы каркас сооружения. Иногда их называют пневматическими сооружениями высокого давления, потому что давление воздуха в трубах намного выше, чем под воздухоопорной пленкой.

Возведение воздухоопорных сооружений начинают с подготовки площадки, на которую укладывают бетон или асфальт. По контуру сооружения устраивают фундамент с анкерными и уплотняющими устройствами. Под действием воздушного давления оболочка распрямляется и приобретает проектную форму.

Воздухонесущие или пневмокаркасные конструкции сооружаются аналогично воздухоопорным, лишь с той разницей, что воздух подают от компрессора по резиновым трубами и через специальные вентили закачивается в замкнутые каналы так называемого каркаса сооружения. Благодаря высокому давлению в камерах каркас занимает проектное положение (чаще всего в виде арок) и поднимает за собой ограждающую ткань.

Архитектурный облик большепролетных зданий в значительной степени определяется их ролью в композиции фрагмента окружающей городской застройки, функциональными особенностями зданий и примененными конструкциями покрытий.

Общественные функции зданий зального типа требуют выделять перед ними значительные свободные пространства различного назначения для: перемещения больших потоков зрителей перед началом или по окончании зрелищ (перед зрелищными или демонстрационными спортивными сооружениями); размещения открытой части экспозиции (перед выставочными павильонами): сезонной торговли (перед крытыми рынками) и т. д. Перед любыми из этих зданий отводят также территории для паркования индивидуальных автомашин. Таким образом, независимо от назначения здания его размещение в застройке дает возможность целостно воспринимать объем сооружения с удаленных точек зрения. Это обстоятельство определяет общие композиционные требования к архитектуре зданий: целостность и монументальность их облика и преимущественно крупный масштаб основных членений объема.

Такую особенность градостроительной роли общественных зданий зального типа часто учитывают в композиции их облика. Вспомогательные и обслуживающие помещения, которые могут быть размещены в отдельных объемах, приблокированных к основному (как, например, во Дворце спорта «Юбилейный» в Санкт-Петербурге), по большей части не блокируют, а вписывают в основной объем здания. Для этого вспомогательные и обслуживающие помещения спортивных зданий располагают в нижних этажах или в подтрибунном пространстве, в зданиях крытых рынков и выставочных павильонов - в цокольном и подвальном этажах и т. п.

Характерными примерами реализации подобного объемно-планировочного принципа компоновки здания служат такие внешне различные объекты, как универсальный Олимпийский зал «Дружба» в Лужниках в Москве и здание спортивного центра префектуры Такамацу в Ниигате (Япония).

Зал «Дружба» имеет основной демонстрационный зал вместимостью 1,5-4 тыс. зрителей (при трансформации) с ареной 42X42 м, рассчитанной на 12 видов спорта при оптимальной видимости всех соревнований (предельное удаление 68 м). Зал покрыт пологой сферической оболочкой, опертой на 28 наклонных опор из сборно-монолитных складчатых оболочек двоякой кривизны. Наклонное расположение опор позволило увеличить габариты первого этажа и за счет этого разместить в нем четыре тренировочных зала и четыре спортивные площадки, вписанные в единый центрально-симметричный объем с ярко выраженной тектоничностью архитектурной формы ( ).

Спортивный центр в Ниигате имеет арену 42X42 м с двусторонними трибунами вместимостью 1,3 тыс. мест и рассчитан на 17 видов спорта, что при радиусе предельного удаления в 40 м обеспечивает комфортное зрительное восприятие. Компактность объема позволяет рационально поярусно разместить основные функциональные группы помещений: для обслуживания зрителей - на первом этаже, для спортсменов - на втором, зал - на третьем. Сама объемная осесимметричная форма, образованная сочетанием двух оболочек двоякой кривизны (покрытие и нижнее перекрытие), на пространственном опорном контуре, лежащем на четырех мощных пилонах, индивидуальна и исполнена образной символики (рис. 111 ).

Рис. 111. Спортивный центр в Ниигате (Япония): а - общий вид; б - продольный разрез; в- схема несущих конструкций: 1 - несущие ванты; 2 - стабилизирующие ванты; 3 - опоры; 4 - бортовой элемент.

Из обоих примеров видно влияние конструктивной формы покрытия на архитектурную форму. И это не случайно, так как конструкция покрытия составляет от 60 до 100% наружных ограждений зданий.

Из числа функциональных параметров на выбор формы покрытия наибольшее влияние оказывают принятые план, вместимость, характер размещения зрительских мест (в спортивных и зрелищных зданиях) и величины пролетов покрытий ( ). В мировой практике для выставочных, многофункциональных зрительных и спортивных залов используют ограниченное число форм планов: прямоугольник, трапецию, овал, круг, многоугольник.

Однако форма плана зала и величины его пролетов не предопределяют однозначно форму покрытия. Большое влияние на ее выбор оказывают не только план, но и обусловленная функциональными особенностями форма здания. Как известно, в демонстрационных спортивных залах вместимость и расположение трибун определяют асимметричную или центрально-симметричную композицию здания, с которой должен быть согласован выбор формы покрытия. С асимметричной формой здания хорошо гармонируют висячие покрытия, с осесимметричной - как сводчатые, так и висячие. Для центричных в плане зданий применимы центричные же конструкции покрытий ( , ).

Окончательный выбор формы покрытия помимо функциональных определяется конструктивными, технологическими, технико-экономическими и архитектурно-художественными требованиями. Согласно последним, конструкция уникального большепролетного здания должна способствовать созданию выразительной тектоничной, индивидуальной, масштабной архитектурной формы. Внедрение пространственных висячих конструкций и конструкций из жестких оболочек дало беспрецедентные и многовариантные архитектурные возможности. Комбинируя различные типы, число, размеры элементарных оболочек, архитектор с помощью конструктора может добиться требуемого масштабного членения формы и индивидуализации ее облика, оригинально разместить проемы верхнего света в покрытии.

Так, например, только для покрытия треугольного в плане помещения могут быть применены пологая оболочка на выпуклом контуре, комбинированное покрытие из четырех треугольных в плане оболочек положительной кривизны, из трех - отрицательной и одной - положительной кривизны и т. д. Одним из наиболее оригинальных по конструкции и выразительных по архитектурной форме является покрытие треугольного в плане выставочного здания в Париже комбинированной оболочкой в виде сомкнутого из трех лотков свода пролетом 206 м. Лотки состоят из двух волнистых оболочек, раскрепленных через каждые три волны диафрагмами жесткости. Использование волнистой формы позволило решить не только чисто конструктивную задачу (достигнуть устойчивости тонкой оболочки), но и обеспечило масштабность композиции этого уникального здания, а традиционная для архитектуры камня система сомкнутого свода получила индивидуальную и остро современную тектоническую трактовку. Столь же индивидуальной и современной оказалась композиционная трактовка железобетонного крестового свода покрытия над квадратным планом здания крытого Олимпийского катка в Гренобле.

Естественно, однако, что в наибольшей степени современный характер архитектуре большепролетных покрытий железобетонными жесткими оболочками придают присущие только им комбинации геометрических форм в виде волнистых куполов и сводов, элементарных или комбинированных фрагментов оболочек с поверхностями отрицательной кривизны или комбинации из оболочек произвольной геометрической формы.

Архитектурно-композиционные возможности висячих систем покрытий непосредственно связаны с их конструктивной формой, возможностями ее индивидуализации и тектоничного выявления в объемной форме здания. В этом отношении наибольшими возможностями обладают висячие покрытия шатрового типа, покрытия на пространственном контуре, а также различные варианты комбинированных висячих систем. В чрезвычайном разнообразии внешнего облика зданий, которое обеспечивает применение висячих покрытий на замкнутом пространственном контуре, можно убедиться, сопоставив такие олимпийские объекты Москвы, как крытый велотрек и спортивный зал в Измайлове. К сожалению, мало способствует индивидуальности внешнего облика здания применение ряда технически наиболее эффективных висячих конструкций, например одно- или двухпоясных систем с горизонтальным кольцевым опорным контуром над круглыми или эллиптическими в плане зданиями. Несущая конструкция с малой стрелой провиса не выявляется во внешней форме здания, а в интерьере обычно бывает скрыта подвесными потолками или осветительными установками. Здания с покрытиями такого типа обычно имеют композицию в виде круглого периптера, антаблемент которого - кольцо опорного контура, а колонны - поддерживающие его стойки (Дворец спорта «Юбилейный» и Олимпийский зал в Санкт-Петербурге, Олимпийский дворец спорта на проспекте Мира в Москве и др.).

Наряду с несущими конструкциями покрытий в композиции зальных общественных зданий значительную роль играют наружные, как правило, ненесущие стены. Образным выражением их ненесущей функции может служить выполнение их с незначительным отклонением от вертикали, придающее зданию характерный силуэт (сужающийся или расширяющийся книзу).

Значительную часть поверхности наружных стен зальных зданий занимают светопрозрачные витражные конструкции. Их композиционные свойства и членения обогащаются при сочетании в конструкции двух-трех светопрозрачных материалов, например профильного и листового стекла.

  • Размеры по вертикали
  • Размеры по горизонтали
  • Особенности компоновки многопролетных рам.
  • Вопрос 49. Связь между колоннами. Связи по покрытию. Фахверк и конструкции заполнения проемов. Постоянные нагрузки. Временные нагрузки. Учет пространственной работы каркаса. Связи между колоннами.
  • Связи по покрытию.
  • Фахверк. .Система конструктивных элементов, служащих для поддержания стенового ограждения и восприятия ветровой нагрузкиназывается фахверком.
  • Особые решения конструктивных схем каркасов
  • Вопрос 50. Особенности расчета поперечных рам. Нагрузки, действующие на раму. Постоянные нагрузки. Временные нагрузки. Учет пространственной работы каркаса. Особенности расчета поперечных рам.
  • Вопрос 51. Конструкция производственного здания. Покрытие по прогонам. Беспрогонные покрытия. Прогоны сплошного сечения. Решетчатые прогоны. Конструкции покрытия.
  • Покрытия с прогоном.
  • Беспрогонное покрытие.
  • Вопрос 51. Конструкция производственного здания. Покрытие по прогонам. Беспрогонные покрытия. Прогоны сплошного сечения. Решетчатые прогоны.
  • Покрытия по прогонам
  • Беспрогонные покрытия
  • Прогоны сплошного сечения
  • Решетчатые прогоны
  • Вопрос 52. Колонны каркасов производственных зданий. Типы колонн. Из каких элеметов состоят колонны. Колонны каркаса. Типы колонн.
  • Вопрос 53. Расчет и конструирование стержня сплошной колонны. Расчет и конструирование стержня сквозной колонны. Расчет и конструирование стержня колонны.
  • Сплошная колонна.
  • 1.Определяют расчетную длину колонны в плоскости рамы для верхней и нижней частей отдельно:
  • 2.Подбор сечения верхней части колонны.
  • Требуемая площадь сечения колонны определяется по формуле
  • 3.Компоновка сечения
  • 4.Определяют геометрические характеристики принятого сечения: a; IX; Iy; Wx; IX; iy.
  • 5.Проверяют устойчивость верхней части колонны в плоскости действия момента
  • 6.Проверяют устойчивость верхней части колонны из плоскости действия момента
  • 7.Проверяют местную устойчивость поясов и стенки.
  • 8.Подбор сечения нижней (подкрановой) части колонны.
  • 9.Требуемая площадь сечения
  • 10.Соединение верхней части колонны с нижней (траверса).
  • 11.База колонны.
  • Сквозная колонна.
  • Особенности расчета сквозной колонны
  • 1.Определение расчетных длин колонн
  • 2.Подбор сечения верхней части колонны.
  • 3.Подбор сечения нижней части колонны.
  • 4.Расчет решетки подкрановой части колонны.
  • 5.Расчет узла сопряжения верхней и нижней частей колонны (траверсы).
  • 6.Расчет базы колонны.
  • Нагрузки на подкрановые конструкции.
  • Вопрос 55. Сплошные подкрановые балки. Конструктивные решения. Основы расчета подкрановых балок. Сплошные подкрановые балки.
  • Расчет подкрановых балок
  • Вопрос 56. Решетчатые подкрановые балки (фермы). Основы расчета и конструирования. Подкраново-подстропильные фермы. Основы расчета и конструирования.
  • Вопрос 57. Опорные узлы подкрановых балок. Крановые рельсы, их крепление к подкрановым балкам. Упоры для кранов.
  • Вопрос 59. Конструктивные решения большепролетных систем. Нагрузки, действующие на большепролетные конструкции. Компоновка каркасов большепролетных покрытий
  • Вопрос 62. Арочные большепролетные конструкции. Их достоинства и недостатки. Нагрузки, действующие на арочные конструкции. Основы расчета и конструирования арочных конструкций. Арочные конструкции
  • Вопрос 59. Конструктивные решения большепролетных систем. Нагрузки, действующие на большепролетные конструкции. Компоновка каркасов большепролетных покрытий

    Каркасы большепролетных покрытий с балочными и рамными несущими системами имеют компоновочную схему, близкую к каркасам производственных зданий. При больших пролетах и отсутствии подкрановых балок целесообразно увеличивать расстояния между основными несущими конструкциями до 12-18 м. Системы вертикальных и горизонтальных связей имеют те же назначения, что и в производственных зданиях и компонуются аналогично.

    Компоновка рамных покрытий бывает поперечная , когда несущие рамы ставят поперек здания, и продольная , характерная для ангаров. При продольной компоновке основная несущая рама ставится в направлении большего размера плана здания и на нее опираются поперечные фермы.

    Верхние и нижние пояса несущих рам и поперечных ферм развязываются крестовыми связями, обеспечивающими их устойчивость.

    В арочных системах шаг арок принимается 12 м. и более; по аркам укладываются главные прогоны, на которые опираются поперечные ребра, поддерживающие кровельный настил.

    При больших пролетах и высотах основных несущих систем (рам, арок) применяются пространственно устойчивые блочные конструкции путем спаривания соседних плоских рам или арок (рис.8), а также применением трехгранных сечений арок. Арки соединяются в ключе продольными связями, значение которых для жесткости сооружения особенно велико при большой стреле подъема арок, когда повышается их общая деформативность.

    Поперечные связи, расположенные между крайней парой арок, рассчитывают на давление ветра, передаваемого с торцовой стены арочного покрытия.

    ВОПРОС 60. Балочные большепролетные конструкции. Их достоинства и недостатки. Конструктивные решения. Нагрузки, действующие на балочные конструкции. Основы расчета и конструирования балочных конструкций.

    Балочные конструкции

    Балочные большепролетные конструкции применяют в случаях, когда опоры не могут воспринять распорных усилий.

    Балочные системы при больших пролетах тяжелее рамных или арочных, но проще в изготовлении и монтаже.

    Балочные системы применяют преимущественно в общественных зданиях – театрах, концертных залах, спортивных сооружениях.

    Основными несущими элементами балочных систем применяемых при пролетах 50-70 м и более являются фермы; сплошные балки при больших пролетах невыгодны по затрате металла.

    Основными достоинствами балочных конструкций является четкость работы, отсутствие распорных усилий и нечувствительность к осадкам опор. Главный недостаток – сравнительно большой расход стали и большая высота, вызванные большими пролетными моментами и требованиями жесткости.

    Рис. 1, 2, 3

    Из этих условий балочные большепролетные конструкции применяют обычно при пролетах до 90м. Несущие фермы больших пролетов могут иметь различное очертание поясов и системы решеток (рис. 1, 2, 3).

    Сечения стержней большепролетных ферм с усилиями в стержнях свыше 4000-5000 кН обычно принимают составными из сварных двутавров или прокатных профилей.

    Большая высота ферм не позволяет перевозить их по железной дороге в виде собранных отправочных элементов, поэтому они поступают на монтаж россыпью и укрупняются на месте.

    Элементы соединяют сваркой или высокопрочными болтами. Применять болты повышенной точности и заклепки не следует из-за большой трудоемкости.

    Рассчитывают большепролетные фермы и подбирают их сечения аналогично легким фермам промышленных зданий.

    Вследствие больших опорных реакций возникает необходимость передачи их строго по оси узла фермы, в противном случае могут возникнуть значительные дополнительные напряжения.

    Четкая передача опорной реакции может быть достигнута посредством тангенциальной (рис.4) или специальной балансирной опоры (рис. 5).

    При пролетах 60-90м становится существенным взаимное смещение опор из-за прогиба фермы и ее температурных деформаций. В этом случае одна из опор может быть катковой (рис.6), допускающей свободные горизонтальные перемещения.

    Если фермы устанавливаются на высокие гибкие колонны, то даже при пролетах до 90м обе опоры могут быть неподвижными из-за податливости верхних частей колонн.

    Большепролетные балочные системы могут состоять из трехгранных ферм с предварительным напряжением, удобных в изготовлении, транспортировке и монтаже (рис.7).

    Включение в совместную работу на сжатие ж/б плиты, уложенной по верхним поясам фермы, использование трубчатых стержней и предварительного напряжения делают такие фермы экономичными по затрате металла.

    Рациональной системой для пролетов 40-60 м является объемно-блочная предварительно напряженная конструкция, в которой несущая конструкция совмещена с ограждающей (рис. 8).

    Конструкция состоит из объемных блоков, включающих две вертикальные фермы высотой 2,5 м, расставленные на расстоянии 3 м и соединенные по верхним и нижним поясам стальными листами δ=16 мм. Балка собирается из отдельных блоков длиной 10-12 м.

    Стальные листы включаются в расчетные сечения верхнего и нижнего поясов ферм.

    Чтобы тонкий лист мог работать на сжатие, в нем создается предварительное растягивающее напряжение по величине большей сжимающего напряжения от нагрузки.

    ВОПРОС 61. Рамные большепролетные конструкции. Их достоинства и недостатки. Конструктивные решения. Нагрузки, действующие на рамные конструкции. Основы расчета и конструирования рамных конструкций.

    Рамные конструкции

    Рамы, перекрывающие большие пролеты, могут быть двухшарнирные и бесшарнирные .

    Бесшарнирные рамы более жестки, экономичнее по расходу металла и удобнее в монтаже; однако они требуют более массивные фундаменты с плотными основаниями для них и более чувствительны к температурным воздействиям и неравномерным осадкам опор.

    Рамные конструкции по сравнению с балочными более экономичны по затрате металла и более жестки, благодаря чему высота ригеля рамы имеет меньшую высоту, чем высота балочных ферм.

    Рамные конструкции применяются для пролетов до 150м. При дальнейшем увеличении пролетов они становятся неэкономичными.

    В большепролетных покрытиях применяются как сплошные, так и сквозные рамы.

    Сплошные рамы применяются редко при небольших пролетах (50-60 м), их преимущества: меньшая трудоемкость, транспортабельность и возможность уменьшения высоты помещения.

    Наиболее часто применяются рамы с шарнирным опиранием. Высоту ригеля рам рекомендуется принимать равной: при сквозных фермах 1/12-1/18 пролета, при сплошных ригелях 1/20 – 1/30 пролета.

    Рамы рассчитывают методами строительной механики. В целях упрощения расчета легкие сквозные рамы можно приводить к эквивалентным им сплошным рамам.

    Тяжелые сквозные рамы (типа тяжелых ферм) должны рассчитываться как решетчатые системы с учетом деформации всех стержней решетки.

    При больших пролетах (более 50 м) и невысоких жестких стойках необходимо производить расчет рам на температурные воздействия.

    Ригели и стойки сплошных рам имеют сплошные двутавровые сечения; их несущая способность проверяется по формулам для внецентренно сжатых стержней.

    В целях упрощения расчета решетчатых рам их распор допускается определять как для сплошной рамы.

      приближенным расчетом устанавливают предварительные сечения поясов рамы;

      определяют моменты инерции сечений ригеля и стоек по приближенным формулам;

      рассчитывают раму методами строительной механики; расчетную схему рамы следует принимать по геометрическим осям;

      определив опорные реакции, находят расчетные усилия во всех стержнях, по которым окончательно подбирают их сечения.

    Типы сечений, конструкция узлов и соединения рамных ферм такие же, как и для тяжелых ферм балочных конструкций.

    Уменьшение изгибающего момента в ригеле рамы можно получить путем передачи веса стены или покрытия пристроек, примыкающих к главному пролету, на внешний узел стойки рамы.

    Другим искусственным приемом разгрузки ригеля является смещение в двухшарнирной раме опорных шарниров с оси стойки внутрь. В этом случае вертикальные опорные реакции создают дополнительные моменты, разгружающие ригель.