Электрооборудование

10 альтернативных источников энергии. Энергетика будущего: реальность и фантазии

10 альтернативных источников энергии. Энергетика будущего: реальность и фантазии

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.

Необычные источники энергии через определенное время будут вынуждены заменить ископаемое топливо. Известно, что ископаемое топливо является причиной загрязнения, войн и изменения климата. Ученые исследовали альтернативные решения, как ветер и солнечная энергия, водородное топливо для автомобилей.

Хотя некоторые автопроизводители, как Toyota и Honda подпитывают рынок , а ветер и солнечные батареи все еще дороже, чем нефть и уголь, то необычные источники энергии могут быть лучшим решением для всех мест их использования.

Например, некоторые медицинские приборы, которые имплантированы в организм человека могут использовать супер крошечные батареи несколько десятилетий.

Ученые продолжают поиски обильной, дешевой и эффективной мощности путем расследования необычных источников энергии, даже смешных, нереальных и, в некоторых случаях, болезненных. Для того, чтобы решить надвигающиеся энергетические потребности необходимы необычные источники энергии, которые кажутся сверхнормальными. Кто знает в один день, можно будет использоваться сахар для питания ноутбука, бактерии, чтобы запустить автомобиль или мертвые тела для обогрева здания.

В итоге будет время, когда ваши внуки будут издеваться над вашим поколением за использование грязных видов ископаемого топлива для ресурсов мира. Они будут глумиться, когда они будут заполнять топливный бак автомобиля кофе!

Рост цен на энергоносители, экономические и экологические последствия подтолкнули “зеленые” технологии в жизнь.

Как выясняется, есть гораздо более необычные источники энергии, чем кукуруза и патока.

Вот некоторые необычные источники энергии, которые могут ежедневно запитывать бытовую технику:

Мертвые кошки

Очевидно, вряд ли найдется поставщик, продающий дохлых кошек по кило в среднем супермаркете, но это не значит, что они не являются надежным источником топлива.

Немецкий изобретатель по имени Доктор Кристиан Кох изобрел процесс, при котором старые шины, сорняки и животные трупы (в данном случае, дохлые кошки) используются для создания высококачественного био-дизельного топлива. Процесс производит примерно 2,5 литра дизельного топлива на кота. Изобретатель проехал не один км на своем автомобиле, питаемый таким необычным образом без каких-либо проблем.

Очевидно, защитники прав животных разъярены этим сценарием. Надо признать, что идея звучит слишком ужасной, но это технология для будущего.

Тепло тела человека

Традиционному способ использования энергии – естественное тепло тела человека!

Этот естественный источник энергии был реализован во многих странах, но Швеция имеет самый эффективный метод его использования.

Используется тепло тела человека, чтобы использовать.

Тепло тела, 250 000 пассажиров созданное толпой на железнодорожном вокзале Стокгольма (оживленный туристический центр в Скандинавии) огромно. Это тепло используется, чтобы дрейфовать и не упустить, но инженеры нашли способ использовать его и передавать в недавно отреставрированное офисное здание на улице.

Тепло, выделяемое пассажирами используется системами вентиляции станции и предназначено для нагрева воды в подземных резервуарах. Эта вода затем направляется в вентиляционные системы офиса, тем самым нагревая весь блок.

Кофейные отходы

Горячая чашка кофе утром дает стимул для деятельности для большинства. Однако, один и тот же кофе может использоваться также для топлива машинам.

Каждый год население планеты потребляет около 600 миллиардов чашек кофе. Средняя кофейня выбрасывает 10 кг использованного кофе каждый день. Тем не менее, выбрасываемая кофейная гуща на самом деле могут быть использована для производства био-дизельного топлива.

Студента-архитектор в Лондоне, утверждает, что создал первую компанию, начавшую индустриализацию кофе-отходов для переработки и производства био-дизельного топлива и продукцию для биомассы от ранее утилизированного ресурса.

Кофе-машины, несомненно, будут популярны среди хипстеров (стиль смешанный с винтажем и небрежностью).

Шоколад источник энергии

В популярном фильме утверждается что “жизнь-это как коробка шоколадных конфет: никогда не знаешь, что ты собираешься сделать”. С коробки шоколада можно получить топливо для машин.

Отходами, оставшимися от шоколадной фабрики на самом деле можно кормить бактерии, что приводит к образованию водорода. Водород является одним из самых известных видов топлива, так как его единственным побочным продуктом является вода.

Жир из шоколада также может быть преобразован в био-топливо и использоваться для питания гоночного автомобиля.

Энергия в танце

Каким бы ночным клубом не была бы танцевальная площадка, но её надо освещать.

Ряд танцевальных клубов в Японии уже реализовали эту технологию для того, чтобы сделать свои заведения самодостаточной.

Кинетическая энергия людей, ходьба или танцы могут быть преобразованы в электроэнергию, которая затем используется. Принцип в применении механической силы на пол, показывая прямой выход электричества от движений человека.

Эта концепция работает на принципе пьезоэлектричества. Пьезоэлектричество производится, когда толчок или давление прикладывается к объекту, которое затем может быть преобразовано в электричество.

Водоросли

Необычным источником энергии и наиболее перспективным вариантом в этом списке являются водоросли, которые могли бы реально заменить ископаемое топливо на нашей планете. Водоросли обладают большой теплотворной способностью (теплосодержанием), чем кукуруза или сахар, что делает их более эффективными в качестве источника топлива.

Эта идея была примерно с 1942 года, и с тех пор ученые активно работают над различными способами, чтобы использовать эти возможности.

Водоросли, как источник топлива могут быть высушены и использовать жирные кислоты, которые затем извлекаются. Эти жирные кислоты подвергаются этерификации в биодизельное топливо.

Это дикие и необычные источники энергии которые в наше время могут быть расценены как выбор сумасшедшего сейчас, но не для будущего человечества.

МОСКВА, 18 окт - РИА Новости. Антон Поляков. Что общего у футболки, шорт, сапог, рубашки, кружки, спального мешка и футбольного мяча? То, что все они могут послужить возобновляемыми источниками энергии для ваших гаджетов. Подборка самых необычных зарядных устройств - в материале РИА Новости.

Термоэлектрика

Есть зарядка? Что придет на смену литий-ионным аккумуляторам Ближе всего к массовому производству находятся натриевые аккумуляторы с вдвое лучшими характеристиками. За ними идут графеновые суперкондесаторы и атомные технологии.

Пионером в деле массового внедрения термоэлектрических модулей для зарядки гаджетов можно считать компанию BioLite , которая в 2009 году представила первый прототип компактной дровяной печки CampStove . Вскоре концепт обзавелся обычным USB -портом, через который можно было подзаряжать телефоны и другие мобильные устройства, что предопределило направление развития всей продуктовой линейки.

Сегодня термоэлектрические модули можно найти даже в предметах одежды и обуви. В этом случае они используют тепло человеческого тела для выработки электричества. Например, учеными в Государственном университете Северной Каролины были разработаны специальные термонаклейки толщиной всего два миллиметра. Они могут крепиться непосредственно на кожную поверхность или интегрироваться в одежду.

С одного квадратного сантиметра материала можно пока получить лишь около 20 милливатт-часов, чего хватит только для питания специальных кардиодатчиков. Но с развитием технологии и увеличением площади от такой футболки можно будет подзаряжать даже смартфоны.

Более мощные термоэлементы можно найти в подошве сапог, которые были созданы при участии коммуникационной компании Orange и экспертов из Gotwind . По заверению разработчиков двенадцатичасовое ношение этой обуви даст один час качественной зарядки для смартфона.

Не забыты спортсмены и путешественники. На них ориентирован термоэлектрический браслет Dyson Energy. Все, что нужно - это лишь носить его на руке. А если понадобится подзарядить какой-либо гаджет, в ремешке браслета есть штекер micro USB .


Для туристов выбор зарядных устройств самый широкий. Наиболее любопытной вещью является спальный мешок серии Power Pocket другой коммуникационной компании Vodafone . Сделан он из ткани с несколькими слоями специальных полимеров и диэлектриков, которые создают электрический ток благодаря разнице температур внутри и снаружи. За ночь такой "спальник" способен накопить энергии, достаточной для одиннадцати часов зарядки смартфонов.

К спальному мешку можно добавить кружку-котелок Powerpot и чайник BioLite Kettlecharge . Их дно имеет встроенные термоэлементы, способные выдавать ток до одного ампера при напряжении в пять вольт.

Кинетические генераторы

Кинетические генераторы преобразуют механические движения в электрический ток. В разное время на рынке появлялись различные устройства. Наиболее примечательным решением оказался футбольный мяч Soccket . И хотя низкая надежность устройства не дала ему завоевать рынок, общий интерес к нему был весьма велик.

Более успешными оказались устройства nPower PEG и ему подобные. Компактные размеры и встроенный аккумулятор позволяли им копить энергию во время переноски в сумке или кармане.

К тому же типу устройств относится нарукавник Orange DanceCharge , который может оказаться полезным не только любителям дискотек, но и спортсменам или туристам.

Ткани

В данный момент многие компании экспериментируют со специальными тканями, имеющими в своей основе фотовольтаические ячейки. Такие материалы выполняют роль солнечных батарей и помогают заряжать или питать различные гаджеты. Однако текущие наработки пока еще далеки от массового производства.

Тем не менее, в ассортименте продуктов некоторых компаний можно найти специальный пористый материал, который способен генерировать электроэнергию за счет своего растяжения или сжатия благодаря пьезоэлектрическому эффекту. Он был использован Vodafone в шортах серии Power Pocket .

О скорости заряда смартфона компания разумно умалчивает, поскольку она невелика, но само по себе направление весьма перспективное. И с учетом общего тренда к появлению умной одежды, все эти разработки могут стать весьма популярными при условии назначения приемлемой цены.

Buoyant Airborne Turbine (BAT), огромный аэростат с ветряной турбиной, может набирать высоту до 600 метров. На этом уровне скорость ветра значительно выше, чем у поверхности земли, что позволяет удвоить выработку энергии.

9. Волновая электростанция Oyster

Желтый поплавок — надводная часть насоса, который находится на 15-метровой глубине в полукилометре от берега. Используя энергию волн, Oyster («Устрица») перегоняет воду на вполне обычную гидроэлектростанцию, расположенную на суше . Система способна вырабатывать до 800 кВт электроэнергии, обеспечивая светом и теплом до 80 домов.

8. Биотопливо на основе водорослей

Водоросли содержат до 75% натуральных масел, растут очень быстро, не нуждаются в пахотных землях или воде для полива. С одного акра (4047 кв. м.) «морской травы» можно получить от 18 до 27 тысяч литров биотоплива в год. Для сравнения: сахарный тростник при тех же исходных дает лишь 3600 литров биоэтанола.

7. Солнечные батареи в оконных стеклах

Стандартные солнечные батареи преобразуют энергию Солнца в электричество с эффективностью 10−20%, а их эксплуатация довольно затратна. Но недавно ученые из университета Калифорнии разработали прозрачные панели на основе относительно недорогого пластика. Батареи черпают энергию из инфракрасного света и могут заменить обычные оконные стекла.

6. Вулканическое электричество

Принцип работы геотермальной электростанции такой же, как и у теплоэлектростанции, только вместо угля используется тепло земных недр. Для добычи этого вида энергии идеальны районы с высокой вукланической активностью, где магма подходит близко к поверхности.

5. Сферическая солнечная батарея

Даже в облачный день заполненный жидкостью стеклянный шар Betaray работает в четыре раза эффективнее, чем обычная солнечая батарея. И даже в ясную ночь сфера не дремлет, извлекая энергию из лунного света.

4. Вирус М13

Ученым Национальной лаборатории имени Лоуренса в Беркли (Калифорния) удалось модифицировать вирус-бактериофаг М13 так, что он создает электрический заряд при механической деформации материала. Чтобы получить электричество, достаточно нажать на кнопку или провести пальцем по дисплею. Впрочем, пока максимальный заряд, который удалось получить «инфекционным путем», равен возможностям четверти микропальчиковой батарейки.

3. Торий

Торий — радиоактивный металл, похожий на уран, но способный давать в 90 раз больше энергии при распаде. В природе он встречается в 3−4 раза чаще , чем уран, а всего один грамм вещества по количеству выделяемого тепла эквивалентен 7400 галлонам (33640 литрам) бензина. 8 грамм тория хватит, чтобы автомобиль мог ехать более 100 лет или 1,6 млн км без дозаправки. В общем, компания Laser Power Systems объявила о начале работ над ториевым двигателем. Посмотрим-с!

2. Микроволновый двигатель

Как известно, космический корабль получает импульс для взлета за счет выброса и сгорания ракетного топлива. Основы физики попытался перечеркнуть Роджер Шойер . Его двигатель EMDrive (мы о нем писали) не нуждается в горючем, создавая тягу с помощью микроволн, которые отражаются от внутренних стенок герметичного контейнера. Впереди еще долгий путь: силы тяги такого мотора не хватает даже для того, чтобы сбросить со стола монету.

1. Международный экспериментальный термоядерный реактор (ITER)

Предназначение ITER — воссоздать процессы, происходящие внутри звезд. В противовес расщеплению ядра речь идет о безопасном и безотходном синтезе двух элементов. Получив 50 мегаватт энергии, ITER вернет 500 мегаватт — достаточно, чтобы обеспечить электричеством 130 000 домов. Запуск реактора, базирующегося на юге Франции, произойдет в начале 2030-х, а подключить его к энергетической сети получится не раньше 2040 года.

Большинство людей согласится с тем, что рано или поздно человечеству придется отказаться от органического топлива. Оно является главной причиной войн и политической нестабильности, загрязнения окружающей среды и глобального изменения климата. К счастью, ученые уже в течение многих лет исследуют альтернативные источники энергии, такие как сила солнца, ветра и воды. Но ветроэнергетические установки и солнечные панели по-прежнему являются гораздо более дорогими по сравнению с переработкой нефти и угля, более того они пригодны далеко не для всех регионов.

Поэтому исследователи не прекращают поиск новых решений, новых перспективных источников дешевой энергии, постепенно обращая свое внимание на менее распространенные методы. Некоторые кажутся довольно необычными, некоторые - откровенно глупыми, нереалистичными, а то и отвратительными.

«Я считаю, для того, чтобы справиться с неотвратимо надвигающимся энергетическим кризисом, нам нужно мыслить нестандартно, - говорит Бобби Самптер, ведущий специалист теоретической химии Национальной лаборатории Оак Ридж (OakRidgeNationalLaboratory).

Творческий подход в поиске нетрадиционных источников энергии приближает нас к решению проблем энергетической безопасности. И не обязательно это должны быть масштабные национальные проекты. Нет ничего плохого в решениях, рассчитанных на применение на более мелком уровне - к примеру, в отдельных деревнях или поселениях в развивающихся странах.

«Нельзя упускать ни одну идею. Мы должны поощрять нестандартные подходы», - настаивает Диего дель Кастилло Негрете, ведущий специалист подразделения энергии термоядерного синтеза Национальной лаборатории Оак Ридж.

Здесь представлены десять самых удивительных источников энергии, которые шагают далеко за грань обыденного. Но кто знает: возможно, однажды ваш ноутбук будет работать на сахаре, автомобиль ездить на бактериях, а ваш дом будет обогревать энергия мертвых тел.

Сахар

Засыпать сахар в бензобак автомобиля считается старой и не самой безобидной шуткой, которая может серьезно повредить двигатель. Но однажды сахар может превратиться в превосходное топливо для вашего автомобиля. Специалисты кафедры химии Виргинского политехнического института работают над технологией выработки из сахара водорода, который может использоваться в качестве более чистого и дешевого топлива, не выделяющего токсичных веществ и даже какого-либо сопутствующего запаха. Ученые смешивают сахар, воду и тринадцать мощных ферментов в реакторе, вырабатывающем из смеси водород, и отслеживают следы углекислого газа.

Водород может улавливаться и закачиваться в топливную батарею для производства энергии. В результате процесса образуется в три раза больше водорода, чем при использовании традиционных методов, что напрямую влияет на себестоимость технологии.

К сожалению, прежде чем потребители смогут заправлять свои автомобили сахаром, пройдет еще лет десять. В краткосрочной перспективе более реалистичным кажется конструирование батарей на основе сахара для ноутбуков, сотовых телефонов и другой электротехники. Такие батареи будут работать дольше и надежнее современных аналогов.

Солнечные ветры

Объемы энергии, в сто миллиардов раз большие, чем сейчас потребляет все человечество вместе взятое, находятся буквально под рукой. Это энергия солнечных ветров - потоков заряженных ионизированных частиц, испускаемых Солнцем. Брук Хэрроп, физик Вашингтонского государственного университета в городе Пуллман и Дирк Шульце-Макух из Вашингтонского государственного института исследования природных ресурсов и окружающей среды полагают, что смогут захватывать летящие частицы при помощи спутника, вращающегося вокруг Солнца по земной орбите.

Согласно их проекту, спутник, названный ими Дайсон-Хэрроп, будет содержать длинный медный провод, заряжаемый от находящейся здесь же батарей, для создания магнитного поля, способного выхватывать электроны из потока солнечного ветра. Энергия электронов будет передаваться со спутника на Землю при помощи инфракрасного лазера, на который не будет влиять земная атмосфера.

В реализации проекта существуют и некоторые препятствия, с которыми ученые пытаются сейчас справиться. Во-первых, необходимо решить вопрос, как защитить спутник от космического мусора. Во-вторых, земная атмосфера все же может поглотить часть энергии, передаваемой с такого огромного расстояния. Да и сама задача нацеливания инфракрасного луча в точно выбранное место совсем не простая задача.

Данная разработка имеет большие перспективы в обеспечении энергией космических аппаратов.

Моча и экскременты

Большинство людей считают, что кал и моча должны быть моментально ликвидированы. Однако экскременты, вырабатываемые как людьми, так и домашними животными, содержат газ метан, не имеющий ни цвета, ни запаха, но способный вырабатывать энергию не хуже природного газа.

Идеей превращения собачьих экскрементов в энергию увлечены, как минимум, две исследовательские группы - одна в Кембриджском университете (штат Массачусетс), вторая, представленная специалистами компании «NorcalWaste», в Сан-Франциско. Обе группы предлагают владельцам собак использовать во время выгула своих питомцев биоразложимые пакеты для уборки продуктов их жизнедеятельности. Затем пакеты выбрасываются в специальные контейнеры, так называемые «реакторы», где и будет происходить выработка метана, который может использоваться, к примеру, для освещения городских улиц.

На молочных фермах Пенсильвании в качестве нового источника энергии рассматривается навоз домашнего скота. Шесть сотен коров производят почти 70 тыс. килограмм навоза в день, что - при использовании его как источника метана - позволит ферме экономить порядка 60 тыс. долларов в год. Биоотходы могут использоваться не только как удобрения, но и для освещения и обогрева жилищ. А американская ИТ-компания «Hewlett-Packard» недавно выпустила пресс-релиз, в котором рассказывала, как фермеры могут повысить свой доход, сдавая землю в аренду интернет-провайдерам, которые могут использовать энергию метана для своих компьютеров.

Отходы человеческой жизнедеятельности не менее эффективны. В Бристоле, Австралия, был представлен Volkswagen-«жук», работающий на метане, выработанном на заводе по очистке сточных вод. А по оценкам инженеров британской компании «WessexWater», биоотходы из 70 домов могут дать достаточно метана для того, чтобы автомобиль мог проехать без остановки 16 тыс. километров.

И не стоит забывать и о моче. Исследователи факультета инженерии и физических наук Университета Гериот-Ватт (Эдинбург, Шотландия) ищут способ создания первой в мире топливной батареи, работающей на моче. Данная технология может найти свое применение в космической и военной отрасли, давая возможность производить энергию на ходу. Мочевина является доступным и нетоксичным органическим веществом, богатом азотом. Так что, да, фактически люди являются носителем химического соединения, способного служить источником энергии.

Люди: живые и мертвые

Когда в следующий раз вам придется ехать в переполненном вагоне метро в жаркий летний день, постарайтесь не раздражаться, а лучше задумайтесь о том, что тепла, производимого вашим телом достаточно для обогрева целого здания, со всеми его офисами, квартирами и магазинами. По крайней мере, такого мнения придерживаются в Стокгольме и Париже. Государственная компания по управлению недвижимостью «Jernhuset» обдумывает план использования тепла, выделяемого пассажирами поезда метро, проходящего через Центральную станцию Стокгольма. Тепло будет нагревать бегущую по трубам воду, которая поступает в вентиляционную систему зданий. А владелец недорогого жилого комплекса в Париже планирует обогреть с помощью пассажиров метро семнадцать квартир недалеко от центра Помпиду.

Как ни удивительно, не менее жизнеспособным оказывается и проект, использующий энергию мертвых тел. Таким методом пользуется британский крематорий, обогреваемый самими «клиентами». Газ от сжигания органических материалов и раньше захватывался системой для очистки от ртути, но теперь тепло стали пропускать по трубам для обогрева здания.

Вибрации

Сходи на вечеринку и помоги окружающей среде - под таким лозунгом можно популяризовать новую стратегию. Клуб «Watt» в Роттердаме (Голландия) использует вибрации пола от ходящих и танцующих людей для питания светового шоу. Это достигается путем использования пьезоэлектрических материалов, способных под давлением преобразовывать вибрации в электрический ток.

Военные силы США также заинтересованы в использовании пьезоэлектриков для получения энергии. Они помещают их в солдатские ботинки для энергопитания радиоприемников и других портативных электрических устройств. Несмотря на большой потенциал, данная технология не слишком широко распространена. В основном, из-за своей дороговизны. На установку напольного покрытия на 2500 кв.м. из пьезоматериалов первого поколения клуб «Watt» потратил 257 тыс. долларов, которые так и не смогли окупиться. Но в будущем покрытие будет усовершенствовано для увеличения объема вырабатываемой энергии - и танцы станут по-настоящему энергичными!

Шлам

Только в одной Калифорнии в год вырабатывается более 700 тысяч тонн шлама - нерастворимых отложений в паровых котлах в виде ила или твердых кусков. Однако мало кто задумывается о том, что этого материала достаточно для производства 10 миллионов киловатт-часов электроэнергии в сутки. Исследователи университета Невады занимаются сушкой этого осадка, чтобы сделать из него горючее для последующей газификации, которая приведет к получению электричества. Ученые изобрели установку, превращающую вязкий осадок в порошок при использовании «кипящего» при достаточно низкой температуре песка. В результате мы получаем недорогое, но весьма эффективное биотопливо.

Такая технология, превращающая отходы в топливо может размещаться прямо на производствах, позволяя компаниям сэкономить средства на перевозке и утилизации шлама. Хотя исследования еще продолжаются, предварительные оценки свидетельствуют о том, что запущенная на полную мощность система потенциально может генерировать 25 тысяч киловатт-часов энергии в день.

Медузы

Глубоководные медузы, светящиеся в темноте, содержат в себе вещества, способные стать новыми источниками энергии. Их свечение происходит за счет зеленого флуоресцентного белка. Команда исследователей Технического университета Чалмерса (Готенберг, Швеция) поместила белок на алюминиевые электроды и облучила их ультрафиолетовыми лучами, и вещество начало испускать электроны.

Этот белок был использован и для создания биологического топливного элемента, способного производить электричество без внешнего источника света, вместо которого используется смесь химических веществ - магния и биокатализатора люциферазы, который можно обнаружить в светлячках.

Подобные топливные элементы могут применяться на очень мелких наноустройствах, используемых, к примеру, для диагностики или лечения заболеваний.

«Взрывающиеся озера»

Людям известно о существовании трех «взрывающихся озер», получивших свое название из-за огромных объемов метана и углекислого газа, которые накапливаются в его глубинах из-за различия в температуре и плотности воды.

Если температура изменится, газы вырвутся на поверхность, словно из бутылки с газированной водой, убив все живое в пределах своей досягаемости. Подобная трагедия произошла 15 августа 1984 года, когда озеро Ниос в Камеруне выбросило огромное облако концентрированного углекислого газа, ставшего причиной гибели от удушья сотен людей и животных.

Такое озеро есть и в Руанде - озеро Киву. Но местное правительство решило использовать смертоносный газ во благо и построило электростанцию, которая выкачивает вредные газы из озера и использует их для приведения в действие трех больших генераторов, производящих 3,6 МВт электроэнергии. Правительство надеется, что в скором времени электростанция сможет вырабатывать количество энергии, достаточное для удовлетворения потребностей трети страны.

Бактерии

В природе существуют миллиарды бактерий, и, как и любое живое существо, они имеют собственную стратегию выживания на случай нехватки питательных веществ. К примеру, бактерии кишечной палочки E. coliобладают запасом жирных кислот, по составу напоминающих полиэстер. Те же жирные кислоты используются при производстве биодизельного топлива. Видя в этой особенности бактерий большие перспективы, ученые ищут способ их генетического модифицирования для производства большего количества кислот.

Сначала исследователи удалили из микроорганизмов ферменты, затем обезводили жирные кислоты, чтобы избавиться от кислорода. В результате этого процесса они превратили бактерии в некое подобие дизельного топлива. То есть те же самые бактерии, которые вызывают у нас недомогание, могут помочь нам сэкономить, став отличным топливом для наших автомобилей.

Нанотрубки углерода

Как следует из названия, нанотрубки углерода представляют собой полые трубки, формируемые атомами углерода. Сфера их применения весьма широка: от бронематериалов до создания «лифтов», способных перевозить грузы на Луну. А не столь давно группа исследователей Массачусетского технологического института нашла способ использования нанотрубок для сбора солнечной энергии, причем их эффективность в сто раз выше, чем у любых известных сегодня фотогальванических элементов. Это достигается за счет того, что нанотрубки могут функционировать в качестве антенны для захвата солнечного света и перенаправления его на солнечные батареи, преобразующие их в солнечный свет. Таким образом, вместо покрытия всей крыши своего дома панелями солнечных батарей, человек, желающий использовать энергию Солнца, может воспользоваться нанотрубками углерода, занимающими в разы меньше места.

DiscoveryNews, перевод с английского - Наталья Коношенко