Электрооборудование

Расчет тепловой нагрузки на отопление здания калькулятор. Расчет тепловых нагрузок на отопление, методика и формула расчета

Расчет тепловой нагрузки на отопление здания калькулятор. Расчет тепловых нагрузок на отопление, методика и формула расчета

Проектирование и тепловой расчет системы отопления – обязательный этап при обустройстве обогрева дома. Основная задача вычислительных мероприятий – определение оптимальных параметров котла и системы радиаторов.

Согласитесь, на первый взгляд может показаться, что проведение теплотехнического расчета под силу только инженеру. Однако не все так сложно. Зная алгоритм действий, получится самостоятельно выполнить необходимые вычисления.

В статье подробно изложен порядок расчета и приведены все нужные формулы. Для лучшего понимания, мы подготовили пример теплового вычисления для частного дома.

Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

Галерея изображений

Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

Основные задачи расчёта и проектирования системы отопления:

  • наиболее достоверно определить тепловые потери;
  • определить количество и условия использования теплоносителя;
  • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

Для нежилых помещений офисного типа площадью до 100 м 2:

  • 22-24°С – оптимальная температура воздуха;
  • 1°С – допустимое колебание.

Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

Комфортная температура помещения у каждого человека “своя”. Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно – это всё достаточно индивидуально

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

И всё же для конкретных помещений квартиры и дома имеем:

  • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
  • 19-21°С – кухня, туалет, допуск ±2°С;
  • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
  • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

Расчёт теплопотерь в доме

Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

Тепловой расчёт отопительной системы носит индивидуальный характер, его необходимо выполнять грамотно и аккуратно. Чем точнее будут сделаны вычисления, тем меньше переплачивать придется владельцам загородного дома в процессе эксплуатации.

Имеете опыт выполнения теплового расчета отопительной системы? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии. Блок обратной связи расположен ниже.

Вопрос о расчете размера платы за отопление является очень важным, так как суммы по данной коммунальной услуге потребители получают зачастую довольно внушительные, в то же время не имея никакого понятия, каким образом производился расчет.

С 2012 года, когда вступило в силу Постановление Правительства РФ от 06 мая 2011 №354 «О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» порядок расчета размера платы за отопление претерпел ряд изменений.

Несколько раз менялись методики расчета, появлялось отопление, предоставленное на общедомовые нужды, которое рассчитывалось отдельно от отопления, предоставленного в жилых помещениях (квартирах) и нежилых помещениях, но затем, в 2013 году отопление вновь стали рассчитывать как единую коммунальную услугу без разделения платы.

Расчет размера платы за отопление менялся с 2017 года, и в 2019 году порядок расчета вновь изменился, появились новые формулы расчета размера платы за отопление, в которых разобраться обычному потребителю не так уж и просто.

Итак, давайте разбираться по порядку.

Для того чтобы рассчитать размер платы за отопление по своей квартире и выбрать нужную формулу расчета необходимо, в первую очередь знать:

1. Имеется ли на Вашем доме централизованная система теплоснабжения?

Это означает поступает ли тепловая энергия на нужды отопления в Ваш многоквартирный дом уже в готовом виде с использованием централизованных систем или тепловая энергия для Вашего дома производится самостоятельно с использованием оборудования, входящего в состав общего имущества собственников помещений в многоквартирном доме.

2. Оборудован ли Ваш многоквартирный дом общедомовым (коллективным) прибором учета и имеются ли индивидуальные приборы учета тепловой энергии в жилых и нежилых помещениях Вашего дома?

Наличие или отсутствие общедомового (коллективного) прибора учета на доме и индивидуальных приборов учета в помещениях Вашего дома существенно влияет на способ расчета размера платы за отопление.

3. Каким способом Вам производится начисление платы за отопление – в течение отопительного периода либо равномерно в течение календарного года?

Способ оплаты за коммунальную услугу по отоплению принимается органами государственной власти субъектов Российской Федерации. То есть в различных регионах нашей страны плата за отопление может начисляться по разному - в течение всего года или только в отопительный период, когда услуга фактически предоставляется.

4. Имеются ли в Вашем доме помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), или которые имеют собственные источники тепловой энергии?

Именно с 2019 года в связи с судебными решениями, процессы по которым проходили в 2018 году, в расчете стали участвовать помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), что предусмотрено технической документацией на дом, или жилые и нежилые помещения, переустройство которых, предусматривающее установку индивидуальных источников тепловой энергии, осуществлено в соответствии с требованиями к переустройству, установленными действующим на момент проведения такого переустройства законодательством Российской Федерации. Напомним, что ранее методики расчета размера платы за отопление не предусматривали для таких помещений отдельного расчета, поэтому начисление платы осуществлялось на общих основаниях.

Для того чтобы информация по расчету размера платы за отопление была более понятна, мы рассмотрим каждый способ начисления платы отдельно, с применением той или иной формулы расчета на конкретном примере.

При выборе варианта расчета необходимо обращать внимание на все составляющие, которые определяют методику расчета .

Ниже представлены различные варианты расчета с учетом отдельных факторов, которые и определяют выбор расчета размера платы за отопление:

Расчет №1: Размер платы за отопление в жилом/нежилом помещении в течение отопительного периода .

Расчет №2: Размер платы за отопление в жилом/нежилом помещении , ОДПУ на многоквартирном доме отсутствует , расчет размера платы осуществляется в течение календарного года (12 месяцев).
Ознакомиться с порядком и примером расчета →

Расчет №3: Размер платы за отопление в жилом/нежилом помещении , на многоквартирном доме установлен ОДПУ , индивидуальные приборы учета во всех жилых/нежилых помещениях отсутствуют .

Порядок расчета отопления в жилом фонде зависит от наличия приборов учета и от того, каким способом ими оборудован дом. Существует несколько вариантов комплектации счетчиками многоквартирных жилых домов, и согласно которым, производится расчет тепловой энергии:

  1. наличие общедомового счетчика, при этом квартиры и нежилые помещения приборами учетами не оборудованы.
  2. расходы на отопление контролирует общедомовой прибор, а также все или некоторые помещения оборудованы учетными приборами.
  3. общедомовой прибор фиксации потребления и расхода тепловой энергии отсутствует.

Перед тем как рассчитать количество потраченных гигакалорий, необходимо выяснить наличие или отсутствие контроллеров на доме и в каждом отдельном помещении, включая нежилые. Рассмотрим все три варианта расчета тепловой энергии, к каждому из которых разработана определенная формула (размещены на сайте государственных уполномоченных органов).

Вариант 1

Итак, дом оборудован контрольным прибором, а отдельные помещения остались без него. Здесь необходимо брать во внимание две позиции: подсчет гкал на отопление квартиры, затраты тепловой энергии на общедомовые нужды (ОДН).

В данном случае используется формула №3, которая основана на показаниях общего учетного прибора, площади дома и метраже квартиры.

Пример вычислений

Будем считать, что контроллер зафиксировал расходы дома на отопление в 300 гкал/месяц (эти сведения можно узнать из квитанции или обратившись в управляющую компанию). К примеру, общая площадь дома, которая состоит из суммы площадей всех помещений (жилых и нежилых), составляет 8000 м² (также можно узнать эту цифру из квитанции или от управляющей компании).

Возьмем площадь квартиры в 70 м² (указана в техпаспорте, договоре найма или регистрационном свидетельстве). Последняя цифра, от которой зависит расчет оплаты за потребленную теплоэнергию, это тариф, установленный уполномоченными органами РФ (указан в квитанции или выяснить в домоуправляющей компании). На сегодняшний день тариф на отопление равен 1 400 руб/гкал.


Подставляя данные в формулу №3, получим следующий результат: 300 х 70 / 8 000 х 1 400 = 1875 руб.

Теперь можно переходить ко второму этапу учета расходов на отопление, потраченных на общие нужды дома. Здесь потребуется две формулы: поиск объема услуги (№14) и плата за потребление гигакалорий в рублях (№10).

Чтобы правильно определить объем отопления в данном случае, потребуется суммирование площади всех квартир и помещений, предоставленных для общего пользования (сведения предоставляет управляющая компания).

К примеру, у нас имеется общий метраж в 7000 м² (включая квартиры, офисы, торговые помещения.).

Приступим к вычислению оплаты за расход тепловой энергии по формуле №14: 300 х (1 – 7 000 / 8 000) х 70 / 7 000 = 0,375 гкал.


Используя формулу №10, получаем: 0,375 х 1 400 = 525, где:

  • 0,375 – объем услуги за подачу тепла;
  • 1400 р. – тариф;
  • 525 р. – сумма платежа.

Суммируем результаты (1875 + 525) и выясняем, что оплата за расход тепла составит 2350 руб.

Вариант 2

Теперь проведем расчет платежей в тех условиях, когда дом оснащен общим учетным прибором на отопление, а также индивидуальными счетчиками снабжена часть квартир. Как и в предыдущем случае, подсчет будет проводиться по двум позициям (тепловые энергозатраты на жилье и ОДН).

Нам понадобится формула №1 и №2 (правила начислений согласно показаниям контроллера или с учетом нормативов потребления тепла для жилых помещений в гкал). Вычисления будут проводиться относительно площади жилого дома и квартиры из предыдущего варианта.

  • 1,3 гигакалорий – показания индивидуального счетчика;
  • 1 1820 р. – утвержденный тариф.

  • 0,025 гкал – нормативный показатель расхода тепла на 1 м² площади в квартире;
  • 70 м² – метраж квартиры;
  • 1 400 р. – тариф на тепловую энергию.

Как становится понятно, при таком варианте сумма платежа будет зависеть от наличия устройства учета в вашей квартире.

Формула №13: (300 – 12 – 7 000 х 0,025 – 9 – 30) х 75 / 8 000 = 1,425 гкал, где:

  • 300 гкал – показания общедомового счетчика;
  • 12 гкал – количество тепловой энергии, использованной на обогрев нежилых помещений;
  • 6 000 м² – сумма площади всех жилых помещений;
  • 0,025 – норматив (потребление тепловой энергии для квартир);
  • 9 гкал – сумма показателей со счетчиков всех квартир, которые оборудованы приборами учета;
  • 35 гкал – количество тепла, затраченного на подачу горячей воды при отсутствии ее централизованной подачи;
  • 70 м² – площадь квартиры;
  • 8 000 м² – общая площадь (все жилые и нежилые помещения в доме).

Обратите внимание, что данный вариант включает только реальные объемы потребляемой энергии и если ваш дом снабжен централизованной подачей горячей воды, то объем тепла, затраченного на нужды горячего водоснабжения, не учитывается. Это же касается и нежилых помещений: если они отсутствуют в доме, то и в расчет включены не будут.

  • 1,425 гкал – количество тепла (ОДН);


  1. 1820 + 1995 = 3 815 руб. - с индивидуальным счетчиком.
  2. 2 450 + 1995 = 4445 руб. - без индивидуального устройства.

Вариант 3

У нас остался последний вариант, в ходе которого мы рассмотрим ситуацию, когда на доме отсутствует счетчик тепловой энергии. Расчет, как и в предыдущих случаях, проведем по двум категориям (тепловые энергозатраты на квартиру и ОДН).

Выведение суммы на отопление, проведем при помощи формул №1 и №2 (правила о порядке расчета тепловой энергии с учетом показаний индивидуальных учетных приборов или согласно установленным нормативам для жилых помещений в гкал).

Формула №1: 1,3 х 1 400 = 1820 руб., где:

  • 1,3 гкал – показания индивидуального счетчика;
  • 1 400 р. – утвержденный тариф.

Формула №2: 0,025 х 70 х 1 400 = 2 450 руб., где:

  • 1 400 р. – утвержденный тариф.


Как и во втором варианте, платеж будет зависеть от того, оборудовано ли ваше жилье индивидуальным счетчиком на тепло. Теперь необходимо выяснить объем теплоэнергии, которая была израсходована на общедомовые нужды, и выполнять это нужно по формуле №15 (объем услуги на ОДН) и №10 (сумма за отопление).

Формула №15: 0,025 х 150 х 70 / 7000 = 0,0375 гкал, где:

  • 0,025 гкал – нормативный показатель расхода тепла на 1 м² жилой площади;
  • 100 м² – сумма площади помещений, предназначенных для общедомовых нужд;
  • 70 м² – общая площадь квартиры;
  • 7 000 м² – общая площадь (всех жилые и нежилые помещения).

Формула №10: 0,0375 х 1 400 = 52,5 руб., где:

  • 0,0375 – объем тепла (ОДН);
  • 1400 р. – утвержденный тариф.


В результате проведенных подсчетов мы выяснили, что полная оплата за отопление составит:

  1. 1820 + 52,5 = 1872,5 руб. – с индивидуальным счетчиком.
  2. 2450 + 52,5 = 2 502,5 руб. – без индивидуального счетчика.

В приведенных выше расчетах платежей за отопление были использованы данные о метраже квартиры, дома, а также о показателях счетчика, которые могут существенно отличаться от тех, которые есть у вас. Все что вам нужно, это подставить свои значения в формулу и произвести окончательный расчет.

Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,...

Энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности .

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия , которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q , подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

1. Твердое тело, имеющее температуру T1 , нагреваем до температуры Tпл , затрачивая на этот процесс количество теплоты равное Q1 .

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1 .

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп , затрачивая на это количество теплоты равное Q3 -Q2 .

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4 -Q3 .

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2 . При этом затраты количества теплоты составят Q5 -Q4 . (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5 , переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5 , пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до температуры Т1 . Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

Q = m * c *(Т2 -Т1 )

m масса вещества в кг

с – удельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

Q = m * λ

λ удельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

Q = m * r

r удельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

2.1. При сгорании топлива:

Q = m * q

q удельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

Q =t *I *U =t *R *I ^2=(t/ R) *U ^2

t время в с

I действующее значение тока в А

U действующее значение напряжения в В

R сопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c , λ , r , q ) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

N =Q /t

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

Расчет в Excel прикладной задачи.

В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…

Условия задачи:

В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)

Расчет выполним в программе MS Excel или в программе OOo Calc .

С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице « ».

Исходные данные:

1. Названия веществ пишем:

в ячейку D3: Сталь

в ячейку E3: Лед

в ячейку F3: Лед/вода

в ячейку G3: Вода

в ячейку G3: Воздух

2. Названия процессов заносим:

в ячейки D4, E4, G4, G4: нагрев

в ячейку F4: таяние

3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем для стали, льда, воды и воздуха соответственно

в ячейку D5: 460

в ячейку E5: 2110

в ячейку G5: 4190

в ячейку H5: 1005

4. Удельную теплоту плавления льда λ в Дж/кг вписываем

в ячейку F6: 330000

5. Массу веществ m в кг вписываем соответственно для стали и льда

в ячейку D7: 3000

в ячейку E7: 20

Так как при превращении льда в воду масса не изменяется, то

в ячейках F7 и G7: =E7 =20

Массу воздуха находим произведением объема помещения на удельный вес

в ячейке H7: =24*15*7*1,23 =3100

6. Время процессов t в мин пишем только один раз для стали

в ячейку D8: 60

Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно

в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8) =9,7

в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8) =41,0

в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8) =9,4

Воздух также должен прогреться за это же самое отведенное время, читаем

в ячейке H8: =D8 =60,0

7. Начальную температуру всех веществ T 1 в ˚C заносим

в ячейку D9: -37

в ячейку E9: -37

в ячейку F9: 0

в ячейку G9: 0

в ячейку H9: -37

8. Конечную температуру всех веществ T 2 в ˚C заносим

в ячейку D10: 18

в ячейку E10: 0

в ячейку F10: 0

в ячейку G10: 18

в ячейку H10: 18

Думаю, вопросов по п.7 и п.8 быть недолжно.

Результаты расчетов:

9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем

для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000 =75900

для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000 = 1561

для плавления льда в ячейке F12: =F7*F6/1000 = 6600

для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000 = 1508

для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000 = 171330

Общее количество необходимой для всех процессов тепловой энергии считываем

в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) = 256900

В ячейках D14, E14, F14, G14, H14, и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).

10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается

для нагрева стали в ячейке D16: =D12/(D8*60) =21,083

для нагрева льда в ячейке E16: =E12/(E8*60) = 2,686

для плавления льда в ячейке F16: =F12/(F8*60) = 2,686

для нагрева воды в ячейке G16: =G12/(G8*60) = 2,686

для нагрева воздуха в ячейке H16: =H12/(H8*60) = 47,592

Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается

в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) = 71,361

В ячейках D18, E18, F18, G18, H18, и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.

На этом расчет в Excel завершен.

Выводы:

Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.

При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).

Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБУДЬТЕ ПОДТВЕРДИТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда - в папку « Спам» )!

Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост, понятен и интересен.

Жду вопросы и комментарии на статью!

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где – удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше, – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м² . В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м . Исходя из этого рассчитываем сопротивление телепередачи – R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм . Для него λ=0,036 . Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон – 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.