Электрооборудование

Перемещение без времени. Аналитическое описание равноускоренного движения

Перемещение без времени. Аналитическое описание равноускоренного движения

Прямолинейное равномерное движение - это такое движение, при котором за одинаковые промежутки времени, тело проходит одинаковое расстояние.

Равномерное движение - это такое движение тела, при котором его скорость остается постоянной (),то есть все время движется с одной скоростью, а ускорение или замедление не происходит ().

Прямолинейное движение - это движение тела по прямой линии, то есть траектория у нас получается - прямая.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор скорости совпадает с вектором перемещения. При всем этом средняя скорость в любой промежуток времени равна начальной и мгновенной скорости:

Скорость равномерного прямолинейного движения - это физическая векторная величина, равная отношению перемещения тела за любой промежуток времен к значению этого промежутка t:

Из данной формулы. мы легко можем выразить перемещение тела при равномерном движении:

Рассмотрим зависимость скорости и перемещения от времени

Так как тело у нас движется прямолинейно и равноускоренно (), то график с зависимостью скорости от времени будет выгладить, как параллельная прямая оси времени.

В зависимости проекции скорости тела от времени ничего сложного нет. Проекция перемещения тела численно равна площади прямоугольника АОВС, так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

На графике мы видим зависимость перемещения от времени .

Из графика видно, что проекция скорости равна:

Рассмотрев эту формулу. мы можем сказать, чем больше угол, тем быстрей движется наше тело и оно проходит больший путь за меньшее время

Теперь мы должны выяснить самое главное - как изменяется координата тела при его прямолинейном равноускоренном движении. Для этого, как мы знаем, нужно знать перемещение тела, потому что проекция вектора перемещения как раз и равна изменению координаты.

Формулу для вычисления перемещения проще всего получить графическим методом.

При равноускоренном движении тела вдоль оси X скорость изменяется со временем согласно формуле v x = v 0х + a x t Так как время в эту формулу входит в первой степени, то график для проекции скорости в зависимости от времени представляет собой прямую, как это показано на рисунке 39. Прямая 1 на этом рисунке соответствует движению с положительной проекцией ускорения (скорость растет), прямая 2 - движению с отрицательной проекцией ускорения (скорость убывает). Оба графика относятся к случаю, когда в момент времени t = О тело имеет некоторую начальную скорость v 0 .

Перемещение выражается площадью. Выделим на графике скорости равноускоренного движения (рис. 40) маленький участок ab и опустим из точек а и Ь перпендикуляры на ось t. Длина отрезка cd на оси t в выбранном масштабе равна тому малому промежутку времени, за который скорость изменилась от ее значения в точке а до ее значения в точке Ь. Под участком ab графика получилась узкая полоска abсd.

Если промежуток времени, соответствующий отрезку cd, достаточно мал, то в течение этого малого времени скорость не может заметно измениться - движение в течение этого малого промежутка времени можно считать равномерным. Полоска abсd поэтому мало отличается от прямоугольника, а ее площадь численно равна проекции перемещения за время, соответствующее отрезку cd (см. § 7).

Но на такие узкие полоски можно разбить всю площадь фигуры, расположенной под графиком скорости. Следовательно, перемещение за все время t численно равно площади трапеции ОАВС. Площадь же трапеции, как известно из геометрии, равна произведению полусуммы ее оснований на высоту. В нашем случае длина одного из оснований численно равна v ox , другого-v x (см. рис. 40). Высота же трапеции численно равна t. Отсюда следует, что проекция s x перемещения выражается формулой

3с 15.09

Если проекция v ox начальной скорости равна нулю (в начальный момент времени тело покоилось!), то формула (1) принимает вид:

График скорости такого движения показан на рисунке 41.

При пользовании формулами (1) и (2) НУЖНО ПОМНИТЬ, ЧТО S x , V ox и v x могут быть как положительным», так и отрицательными - ведь это проекции векторов s, v o и v на ось X.

Таким образом, мы видим, что при равноускоренном движении перемещение растет со временем не так, как при равномерном движении: теперь в формулу входит квадрат времени. Это значит, что перемещение со временем растет быстрее, чем при равномерном движении.



Как зависит от времени координата тела? Теперь легко получить и формулу для вычисления координаты х в любой момент времени для тела, движущегося равноускоренно.

проекция s x вектора перемещения равна изменению координаты х-х 0 . Поэтому можно записать

Из формулы (3) видно, что, для того чтобы вычислить координату х в любой момент времени t, нужно знать начальную координату, начальную скорость и ускорение.

Формула (3) описывает прямолинейное равноускоренное движение, подобно тому как формула (2) § 6 описывает прямолинейное равномерное движение.

Другая формула для перемещения. Для вычисления перемещения можно получить и другую полезную формулу, в которую время не входит.

Из выражения v x = v 0x + a x t. получим выражение для времени

t = (v x - v 0x): a x и подставим его в формулу для перемещения s x , приведенную выше. Тогда получаем:

Эти формулы позволяют найти перемещение тела, если известны ускорение, а также начальная и конечная скорости движения. Если начальная скорость v o равна нулю, формулы (4) принимают вид:

Когда на дороге происходит авария, специалисты измеряют тормозной путь. Зачем? Чтобы определить скорость движения автомобиля в начале торможения и ускорение при торможении. Все это нужно для выяснения причин аварии: или водитель превысил скорость, или были неисправны тормоза, или с автомобилем все в порядке, а виноват нарушивший правила дорожного движения пешеход. Как, зная время торможения и тормозной путь, определить скорость и ускорение движения тела?

Узнаём о геометрическом смысле проекции перемещения

В 7 классе вы узнали, что для любого движения путь численно равен площади фигуры под графиком зависимости модуля скорости движения от времени наблюдения. Аналогичная ситуация и с определением проекции перемещения (рис. 29.1).

Получим формулу для вычисления проекции перемещения тела за интервал времени от t: = 0 до t 2 = t. Рассмотрим равноускоренное прямолинейное движение, при котором начальная скорость и ускорение имеют одинаковое направление с осью OX. В этом случае график проекции скорости имеет вид, представленный на рис. 29.2, а проекция перемещения численно равна площади трапеции OABC:

На графике отрезок OAсоответствует проекции начальной скорости v 0 x, отрезок BC — проекции конечной скорости v x , а отрезок OC — интервалу времени t. Заменив данные отрезки соответствующими физическими величинами и учитывая, что s x = S OABC , получим формулу для определения проекции перемещения:

Формулу (1) применяют для описания любого равноускоренного прямолинейного движения.

Определите перемещение тела, график движения которого представлен на рис. 29.1, б, за 2 с и за 4 с после начала отсчета времени. Поясните ответ.

Записываем уравнение проекции перемещения

Исключим переменную v x из формулы (1). Для этого вспомним, что при равноускоренном прямолинейном движении v x = v 0 x + a x t. Подставив выражение для v x в формулу (1), получим:

Таким образом, для равноускоренного прямолинейного движения получено уравнение проекции перемещения:


Рис. 29.3. График проекции перемещения при равноускоренном прямолинейном движении — парабола, проходящая через начало координат: если a x > 0, ветви параболы направлены вверх (а); если a x <0, ветви параболы направлены вниз (б)

Рис. 29.4. Выбор оси координат в случае прямолинейного движения

Итак, график проекции перемещения при равноускоренном прямолинейном движении — парабола (рис. 29.3), вершина которой соответствует точке разворота:

Поскольку величины v 0 x и a x не зависят от времени наблюдения, зависимость s x (ί) является квадратичной. Например, если

можно получить еще одну формулу для вычисления проекции перемещения при равноускоренном прямолинейном движении:

Формулой (3) удобно пользоваться, если в условии задачи не идет речь о времени движения тела и не нужно его определять.

Выведите формулу (3) самостоятельно.

Обратите внимание: в каждой формуле (1-3) проекции v x , v 0 x и a x могут быть как положительными, так и отрицательными — в зависимости от того, как направлены векторы v, v 0 и a относительно оси OX.

Записываем уравнение координаты

Одна из основных задач механики — определение положения тела (координат тела) в любой момент времени. Мы рассматриваем прямолинейное движение, поэтому достаточно выбрать одну ось координат (например, ось OX), которую следует

направить вдоль движения тела (рис. 29.4). Из данного рисунка видим, что независимо от направления движения координату х тела можно определить по формуле:

Рис. 29.5. При равноускоренном прямолинейном движении график зависимости координаты от времени — парабола, пересекающая ось х в точке х 0

где х 0 — начальная координата (координата тела в момент начала наблюдения); s x — проекция перемещения.

поэтому для такого движения уравнение координаты имеет вид:

Для равноускоренного прямолинейного движения

Проанализировав последнее уравнение, делаем вывод, что зависимость х(ί) — квадратичная, поэтому график координаты — парабола(рис. 29.5).


Учимся решать задачи

Основные этапы решения задач на равноускоренное прямолинейное движение рассмотрим на примерах.

Пример решения задачи

Последовательность

действий

1. Внимательно прочитайте условие задачи. Определите, какие тела принимают участие в движении, каков характер движения тел, какие параметры движения известны.

Задача 1. После начала торможения поезд прошел до остановки 225 м. Какой была скорость движения поезда перед началом торможения? Считайте, что во время торможения ускорение поезда неизменно и равно 0,5 м/с 2 .

На пояснительном рисунке направим ось ОХ в направлении движения поезда. Так как поезд уменьшает свою скорость, то

2. Запишите краткое условие задачи. При необходимости переведите значения физических величин в единицы СИ. 2

Задача 2. По прямолинейному участку дороги идет пешеход с постоянной скоростью 2 м/с. Его догоняет мотоцикл, который увеличивает свою скорость, двигаясь с ускорением 2 м/с 3 . Через какое время мотоцикл обгонит пешехода, если на момент начала отсчета времени расстояние между ними было 300 м, а мотоцикл двигался со скоростью 22 м/с? Какое расстояние проедет мотоцикл за это время?

1. Внимательно прочитайте условие задачи. Выясните характер движения тел, какие параметры движения известны.

Подводим итоги

Для равноускоренного прямолинейного движения тела: проекция перемещения численно равна площади фигуры под графиком проекции скорости движения — графиком зависимости v x (ί):

3. Выполните пояснительный рисунок, на котором покажите ось координат, положения тел, направления ускорений и скоростей.

4. Запишите уравнение координаты в общем виде; воспользовавшись рисунком, конкретизируйте это уравнение для каждого тела.

5. Учитывая, что в момент встречи (обгона) координаты тел одинаковы, получите квадратное уравнение.

6. Решите полученное уравнение и найдите время встречи тел.

7. Вычислите координату тел в момент встречи.

8. Найдите искомую величину и проанализируйте результат.

9. Запишите ответ.

в этом состоит геометрический смысл перемещения;

уравнение проекции перемещения имеет вид:

Контрольные вопросы

1. С помощью каких формул можно найти проекцию перемещения s x для равноускоренного прямолинейного движения? Выведите эти формулы. 2. Докажите, что график зависимости перемещения тела от времени наблюдения — парабола. Как направлены ее ветви? Какому моменту движения соответствует вершина параболы? 3. Запишите уравнение координаты для равноускоренного прямолинейного движения. Какие физические величины связывает это уравнение?

Упражнение № 29

1. Лыжник, движущийся со скоростью 1 м/с, начинает спускаться c горы. Определите длину спуска, если лыжник проехал его за 10 с. Считайте, что ускорение лыжника было неизменным и составляло 0,5 м/с 2 .

2. Пассажирский поезд изменил свою скорость от 54 км/ч до 5 м/с. Определите расстояние, которое проехал поезд во время торможения, если ускорение поезда было неизменным и составляло 1 м/с 2 .

3. Тормоза легкового автомобиля исправны, если при скорости 8 м/с его тормозной путь — 7,2 м. Определите время торможения и ускорение автомобиля.

4. Уравнения координат двух тел, движущихся вдоль оси OX, имеют вид:

1) Для каждого тела определите: а) характер движения; б) начальную координату; в) модуль и направление начальной скорости; г) ускорение.

2) Найдите время и координату встречи тел.

3) Для каждого тела запишите уравнения v x (t) и s x (t), постройте графики проекций скорости и перемещения.

5. На рис. 1 представлен график проекции скорости движения для некоторого тела.

Определите путь и перемещение тела за 4 с от начала отсчета времени. Запишите уравнение координаты, если в момент времени t = 0 тело было в точке с координатой -20 м.

6. Два автомобиля начали движение из одного пункта в одном направлении, причем второй автомобиль выехал на 20 с позже. Оба автомобиля движутся равноускоренно с ускорением 0,4 м/с 2 . Через какой интервал времени после начала движения первого автомобиля расстояние между автомобилями будет 240 м?

7. На рис. 2 представлен график зависимости координаты тела от времени его движения.

Запишите уравнение координаты, если известно, что модуль ускорения 1,6 м/с 2 .

8. Эскалатор в метро поднимается со скоростью 2,5 м/с. Может ли человек на эскалаторе находиться в состоянии покоя в системе отсчета, связанной с Землей? Если может, то при каких условиях? Можно ли при этих условиях движение человека считать движением по инерции? Обоснуйте свой ответ.

Это материал учебника

Как, зная тормозной путь, определить начальную скорость автомобиля и как, зная характеристики движения, такие как начальная скорость, ускорение, время, определить перемещение автомобиля? Ответы мы получим после того, как познакомимся с темой сегодняшнего урока: «Перемещение при равноускоренном движении, зависимость координаты от времени при равноускоренном движении»

При равноускоренном движении график имеет вид прямой линии, уходящей вверх, так как его проекция ускорения больше нуля.

При равномерном прямолинейном движении площадь численно будет равна модулю проекции перемещения тела. Оказывается, этот факт можно обобщить для случая не только равномерного движения, но и для любого движения, то есть показать, что площадь под графиком численно равна модулю проекции перемещения. Это делается строго математически, но мы воспользуемся графическим способом.

Рис. 2. График зависимости скорости от времени при равноускоренном движении ()

Разобьем график проекции скорости от времени для равноускоренного движения на небольшие промежутки времени Δt. Предположим, что они так малы, что на их протяжении скорость практически не менялась, то есть график линейной зависимости на рисунке мы условно превратим в лесенку. На каждой ее ступеньке мы считаем, что скорость практически не поменялась. Представим, что промежутки времени Δt мы сделаем бесконечно малыми. В математике говорят: совершаем предельный переход. В этом случае площадь такой лесенки будет неограниченно близко совпадать с площадью трапеции, которую ограничивает график V x (t). А это значит, что и для случая равноускоренного движения можно сказать, что модуль проекции перемещения численно равен площади, ограниченной графиком V x (t): осями абсцисс и ординат и перпендикуляром, опущенным на ось абсцисс, то есть площади трапеции ОАВС, которую мы видим на рисунке 2.

Задача из физической превращается в математическую задачу - поиск площади трапеции. Это стандартная ситуация, когда ученые физики составляют модель, которая описывает то или иное явление, а затем в дело вступает математика, которая обогащает эту модель уравнениями, законами - тем, что превращает модель в теорию.

Находим площадь трапеции: трапеция является прямоугольной, так как угол между осями - 90 0 , разобьем трапецию на две фигуры - прямоугольник и треугольник. Очевидно, что общая площадь будет равна сумме площадей этих фигур (рис. 3). Найдем их площади: площадь прямоугольника равна произведению сторон, то есть V 0x · t, площадь прямоугольного треугольника будет равна половине произведения катетов - 1/2АD·BD, подставив значения проекций, получим: 1/2t·(V x - V 0x), а, вспомнив закон изменения скорости от времени при равноускоренном движении: V x (t) = V 0x + а х t, совершенно очевидно, что разность проекций скоростей равна произведению проекции ускорения а х на время t, то есть V x - V 0x = а х t.

Рис. 3. Определение площади трапеции (Источник)

Учитывая тот факт, что площадь трапеции численно равна модулю проекции перемещения, получим:

S х(t) = V 0 x t + а х t 2 /2

Мы с вами получили закон зависимости проекции перемещения от времени при равноускоренном движении в скалярной форме, в векторной форме он будет выглядеть так:

(t) = t + t 2 / 2

Выведем еще одну формулу для проекции перемещения, в которую не будет входить в качестве переменной время. Решим систему уравнений, исключив из нее время:

S x (t) = V 0 x + а х t 2 /2

V x (t) = V 0 x + а х t

Представим, что время нам неизвестно, тогда выразим время из второго уравнения:

t = V x - V 0x / а х

Подставим полученное значение в первое уравнение:

Получим такое громоздкое выражение, возведем в квадрат и приведем подобные:

Мы получили очень удобное выражение проекции перемещения для случая, когда нам неизвестно время движения.

Пусть у нас начальная скорость автомобиля, когда началось торможение, составляет V 0 = 72 км/ч, конечная скорость V = 0, ускорение а = 4 м/с 2 . Узнаем длину тормозного пути. Переведя километры в метры и подставив значения в формулу, получим, что тормозной путь составит:

S x = 0 - 400(м/с) 2 / -2 · 4 м/с 2 = 50 м

Проанализируем следующую формулу:

S x = (V 0 x + V x) / 2 · t

Проекция перемещения- это полусумма проекций начальной и конечной скоростей, умноженная на время движения. Вспомним формулу перемещения для средней скорости

S x = V ср · t

В случае равноускоренного движения средняя скорость будет:

V ср = (V 0 + V к) / 2

Мы вплотную подошли к решению главной задачи механики равноускоренного движения, то есть получению закона, по которому меняется координата со временем:

х(t) = х 0 + V 0 x t + а х t 2 /2

Для того чтобы научиться пользоваться этим законом, разберем типичную задачу.

Автомобиль, двигаясь из состояния покоя, приобретает ускорение 2 м/с 2 . Найти путь, который прошел автомобиль за 3 секунды и за третью секунду.

Дано: V 0 x = 0

Запишем закон, по которому меняется перемещение со временем при

равноускоренном движении: S х = V 0 x t + а х t 2 /2. 2 c < Δt 2 < 3.

Мы можем ответить на первый вопрос задачи, подставив данные:

t 1 = 3 c S 1х = а х t 2 /2 = 2· 3 2 / 2 = 9 (м) - это путь, который прошел

c автомобиль за 3 секунды.

Узнаем сколько он проехал за 2 секунды:

S х (2 с) = а х t 2 /2 = 2· 2 2 / 2 = 4 (м)

Итак, мы с вами знаем, что за две секунды автомобиль проехал 4 метра.

Теперь, зная два эти расстояния, мы можем найти путь, который он прошел за третью секунду:

S 2х = S 1х + S х (2 с) = 9 - 4 = 5 (м)

Графическое представление равноускоренного прямолинейного движения.

Перемещение при равноускоренном движении.

I уровень.

Многие физические величины, описывающие движения тел, с течением времени изменяются. Поэтому для большей наглядности описания движение часто изображают графически.

Покажем, как графически изображаются зависимости от времени кинематических величин, описывающих прямолинейное равноускоренное движения.

Равноускоренное прямолинейное движение - это движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, т. е. это движение с постоянным по модулю и направлению ускорением.

a=const - уравнение ускорения. Т. е а имеет численное значение, которое не изменяется со временем.

По определению ускорения

Отсюда мы уже нашли уравнения для зависимости скорости от времени: v = v0 + at.

Посмотрим, как это уравнение можно использовать для графического представления равноускоренного движения.

Изобразим графически зависимости кинематических величин от времени для трех тел

.

1 тело движется вдоль оси 0Х, при этом увеличивает свою скорость (вектор ускорения а сонаправленн с вектором скорости v). vx >0, ах > 0

2 тело движется вдоль оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx >0, ах < 0

2 тело движется против оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx < 0, ах > 0

График ускорения

Ускорение по определению величина постоянная. Тогда для представленной ситуации график зависимости ускорения от времени a(t) будет иметь вид:

Из графика ускорения можно определить как изменялась скорость – увеличивалась или уменьшалась и на какое численное значение изменилась скорость и у какого тела скорость больше изменилась.

График скорости

Если сравнить зависимость координаты от времени при равномерном движении и зависимость проекции скорости от времени при равноускоренном движении, можно увидеть, что эти зависимости одинаковы:

х= х0 + vx t vx = v 0 x + a х t

Это значит, что и графики зависимостей имеют одинаковый вид.

Для построения этого графика на оси абсцисс откладывают время движения, а на оси ординат - скорость (проекцию скорости) тела. В равноускоренном движении скорость тела с течением времени изменяется.

Перемещение при равноускоренном движении.

При равноускоренном прямолинейном движении скорость тела определяется формулой

vx = v 0 x + a х t

В этой формуле υ0 – скорость тела при t = 0 (начальная скорость ), a = const – ускорение. На графике скорости υ (t ) эта зависимость имеет вид прямой линии (рис.).

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. для графика I. Ускорение численно равно отношению сторон треугольника ABC : MsoNormalTable">

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

Для графика I: υ0 = –2 м/с, a = 1/2 м/с2.

Для графика II: υ0 = 3 м/с, a = –1/3 м/с2.

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t . Выделим на оси времени некоторый малый промежуток времени Δt . Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt . Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt . Это перемещение равно площади заштрихованной полоски (рис.). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt , получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF . Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

Так как υ – υ0 = at s t запишется в виде:

Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y 0 прибавить перемещение за время t : DIV_ADBLOCK189">

Так как υ – υ0 = at , окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде: https://pandia.ru/text/78/516/images/image009_57.gif" width="146 height=55" height="55">

При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a . Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t . Результат записывается в виде

Если начальная скорость υ0 равна нулю, эти формулы принимают вид MsoNormalTable">

Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ0, υ, s , a , y 0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.

Пример решения задачи:

Петя съезжает со склона горы из состояния покоя с ускорением 0,5 м/с2 за 20 с и дальше движется по горизонтальному участку. Проехав 40 м, он врезается в зазевавщегося Васю и падает в сугроб, снизив свою скорость до 0м/с. С каким ускорением двигался Петя по горизонтальной поверхности до сугроба? Какова длина склона горы, с которой так неудачно съехал Петя?

Дано :

a 1 = 0,5 м/с2

t 1 = 20 с

s 2 = 40 м

Движение Пети состоит из двух этапов: на первом этапе, спускаясь со склона горы, он движется с возрастающей по модулю скоростью; на втором этапе при движении по горизонтальной поверхности его скорость уменьшается до нуля (столкнулся с Васей). Величины, относящиеся к первому этапу движения, запишем с индексом 1, а ко второму этапу с индексом 2.

1 этап.

Уравнение для скорости Пети в конце спуска с горы:

v 1 = v 01 + a 1t 1.

В проекциях на ось X получим:

v 1x = a 1x t .

Запишем уравнение, связывающее проекции скорости, ускорения и перемещения Пети на первом этапе движения:

или т. к. Петя ехал с самого верха горки с начальной скоростью V01=0

(на месте Пети, я бы поостереглась ездить с таких высоких горок)

Учитывая, что начальная скорость Пети на этом 2 этапе движения равна его конечной скорости на первом этапе:

v 02 x = v 1 x , v 2x = 0, где v1 – скорость с которой Петя достиг подножия горки и начал двигаться к Васе. V2x - скорость Пети в сугробе.

2. По данному графику ускорения расскажите как меняется скорость тела. Запишите уравнения зависимости скорости от времени, если на момент начала движения (t=0) скорость тела v0х =0. Обратите внимание, что каждый последующий участок движения, тело начинает проходить с уже какой-либо скоростью (которая была достигнута за предыдущее время!).

3. Поезд метро, отходя от станции, может развить скорость 72 км/ч за 20 с. Определить с каким ускорением удаляется от вас сумка, забытая в вагоне метро. Какой путь при этом она проедет?

4. Велосипедист, движущийся со скоростью 3 м/с, начинает спускаться с горы с ускорением 0,8 м/с2. Найдите длину го­ры, если спуск занял 6 с.

5. Начав торможение с ускорением 0,5 м/с2, поезд прошел до остановки 225 м. Какова была его скорость перед началом торможения?

6. Начав двигаться, футбольный мяч достиг скорости 50 м/с, пройдя путь 50 м и врезался в окно. Определите время, за которое мяч прошел этот путь, и ускорение, с которым он двигался.

7. Время реакции соседа дяди Олега = 1,5 мин, за это время он сообразит, что случилось с его окном и успеет выбежать во двор. Определите какую скорость должны развить юные футболисты, что бы радостные владельцы окна их не догнали, если до своего подъезда им нужно бежать 350 м.

8. Два велосипедиста еду навстречу друг другу. Первый, имея скорость 36 км/ч, начал подниматься в гору с ускоре­нием 0,2 м/с2, а второй, имея скорость 9 км/ч, стал спус­каться с горы с ускорением 0,2 м/с2. Через сколько времени и в каком месте они столкнуться из-за своей рассеянности, если длина горы 100 м?