Электрооборудование

Насыпная плотность материала определяется по формуле. Определение средней и насыпной плотности

Насыпная плотность материала определяется по формуле. Определение средней и насыпной плотности

Насыпная плотность показывает, какое количество сыпучего материала находится в одном кубе. Ее величина зависит не только от фракции, но и от размеров пустот. Показатель необходим для определения объема закупаемого песка и приготовления растворов. Измеряется в кг/м3, знать это число следует каждому строителю, так как пропорции компонентов влияют на качество всей конструкции или изделия.

Объем, который занимает песок средней крупности и других фракций, каждый раз будет разным. Показатель меняется, исходя из следующих условий:

  • процент влажности;
  • количество различных примесей;
  • структура песчинок;
  • пористость.

Вода изменяет объем: чем выше влажность, тем ниже становится плотность строительного песка. Вес одного куба сырого стройматериала значительно отличается от сухого.

По размеру бывает мелким, средним и крупным. Чем больше песчинка, тем меньше насыпная степень плотности. Происходит это из-за того, что между ними получаются более обширные пустоты. И наоборот, чем мельче фракция, тем больше получится их количество в одном кубометре, так как они сильнее уплотняются. Мелкий применяется при производстве сухих строительных смесей для оштукатуривания, затирок и других. Крупно- и среднефракционный – для изготовления различных растворов, в том числе бетонного и цементного.

В зависимости от места добычи он может содержать глину, известь, гипс и другие вещества. Показатель чистого песка составляет приблизительно 1300 кг/м3, загрязненного – 1800 кг/м3. Чтобы очистить от грязи, необходимо промыть, но из-за этого увеличивается его стоимость.

Пористость показывает число пустот между зернами. Чем она больше, тем меньше степень уплотненности. У рыхлого ее величина равна 47%, у утрамбованного – 37%. Количество пустот уменьшается с насыщением влагой, так как они заполняются водой. Также снижается она после транспортировки, так как материал проседает из-за вибрации, возникающей при движении. Если необходимо достичь максимальной прочности бетонных или железобетонных изделий, то следует использовать уплотненный строительный песок. Он способен выдерживать наибольшую нагрузку и равномерно ее распределять.

Определение степени уплотнения

От плотности стройматериала зависит его назначение, для каких конструкций и зданий он может применяться. По ее показателю делают расчет расхода, чтобы узнать, какое количество смеси получится после замешивания или сколько его требуется. Нередко нужно перевести кубические метры в массу, и наоборот. К тому же некоторые точки реализации продают в кубах, а где-то на вес – в тоннах.

Для перевода в другие единицы измерений существует специальная формула: Р=M/V, где: Р – степень уплотнения, М – масса, V – объем. Например, в кузове находится 3 куба сыпучего материала общим весом 4,8 т или 4800 кг. Плотность тогда будет равна: 4800/3=1600 кг/м3. И наоборот, зная степень уплотнения и количество кубометров в емкости, можно определить вес песка в состоянии естественной влажности или сырого: М=Р/V.

Провести расчеты возможно и своими руками. Сыпучий материал насыпают в ведро объемом 10 л с высоты 10 см до образования возвышающейся горки. Поверхность выравнивают линейкой, не уплотняя его при этом. Расчет средней плотности делают по следующей формуле: Р=(М 2 -М 1)/V, где: М 2 – общий вес, М 1 – вес емкости, V – объем ведра, то есть 10 л. Объем емкости нужно перевести в кубические метры – 0,01. Например, тара весит 620 г или 0,62 кг, песок вместе с ней составляет 15,87 кг. Его плотность равна: Р=(15,87-0,62)/0,01=1525 кг/м3.

Таблица с показателями насыпной плотности песка разных видов:

Виды сыпучего материала

Чаще всего используется строительный, речной и карьерный пески. Речной образуется естественным путем в результате дробления водами горных пород, имеет округлую форму. Так как он постоянно омывается, в нем почти нет примесей, благодаря чему не требует дополнительного очищения перед применением. Делится на несколько групп по размерам. Зерна до 2 мм называют мелкими, 2-2,8 – средние, 2,9-5 – крупные.

Насыпная средняя плотность составляет 1650 кг/м3. Главное преимущество – является экологически чистым и безопасным материалом как для окружающей среды, так и для человека. Применяется для замешивания кладочных и штукатурных растворов, изготовления бетонных изделий, сухих смесей, а также благоустройства территорий. Речной песок имеет высокую стоимость, поэтому если по техническим нормам его можно заменить, то лучше выбрать карьерный.

Применяется при прокладке автомобильных дорог, созданию подушек для фундаментов, подсыпок. При изготовлении бетона и различных растворов используется в качестве наполнителя. Состоит из множества разных элементов – шпат, слюда, кварц и так далее. В зависимости от того, какой компонент в нем составляет наибольшую часть, ему присваивается название, например, если это известняк, то называют известняковым.

Помимо средней степени уплотнения существует истинная. Ее величина неизменяемая и всегда постоянная. Найти ее можно только в лабораторных условиях опытным путем. В отличие от определения насыпной плотности, в этой не учитываются пустоты и зазоры.

При выборе следует учитывать: чем крупнее зерна, тем больше потребуется вяжущего порошка для замешивания растворов. Цемент должен закрыть все пустоты, иначе конструкция получится непрочной. Из-за этого возрастает себестоимость цементного или бетонного состава. Также необходимо обращать внимание на степень радиоактивности, особенно если это карьерный песок. Для возведения дома используется материал только первого класса.

Для снижения расходов можно купить немытый песок и очистить его самостоятельно. Но делать так рекомендуется, если требуется маленький объем, иначе это потребует чересчур много времени и больших трудовых затрат. Приобрести стройматериал можно как навалом, так и в мешках.

Но также производит и биологически активные добавки (БАД) к пище в таблетированной и капсулированной форме. В связи с этим кажется необходимым рассказать о некоторых похожих терминах и технологические свойствах этих продуктов.

Технологические свойства порошкообразных (таблетированных и капсулированных ) лекарственных веществ и биологически активных добавок к пище зависят от их физико-химических свойств. При производстве биологически активных добавок в форме таблеток и в форме твёрдых желатиновых капсул необходимо учитывать различные технологические характеристики, так как активные компоненты и многие экстракты лекарственных растений поступают в виде порошков или порошковых смесей.

Насыпная плотность

Базовой характеристикой всех сыпучих материалов является плотность. Существуют понятия истинной и насыпной плотности, которые измеряются в г/см 3 или кг/м 3 .

Истинная плотность – это отношение массы тела к объему этого же тела в сжатом состоянии, в котором не учитываются зазоры и поры между частицами. Истинная плотность – постоянная физическая величина, которая не может быть изменена.

В своем естественном состоянии (неуплотненном) сыпучие материалы характеризуются насыпной плотностью. Под насыпной плотностью различных сыпучих материалов понимают количество порошка (сыпучего продукта), которое находится в свободно засыпанном состоянии в определённой единице объема.

Насыпная плотность заданного порошка или любой сыпучей смеси (D нас. пл.) определяется отношением массы свободно засыпанного порошка (Mасса cып.) к объему этого порошка (Vcосуда) по формуле:

D нас.пл.= Mасса cып/Vcосуда

Насыпная плотность учитывает не только объем частиц материала, но и пространство между ними, поэтому насыпная плотность гораздо меньше, чем истинная. Например, истинная плотность каменной соли составляет 2,3 т/м 3 , а насыпная – 1,02 т/м 3 .

Зная насыпную плотность применяемых сыпучих материалов можно при проектировании емкостей или дозаторов, а так же капсул и таблеток рассчитать их объем и, соответственно, высоту засыпки. Понятно, что если нам частично известны некоторые параметры, а именно высота засыпки, а так же коэффициент засыпки, то можно рассчитать высоту предполагаемого объема, то есть высоту форматных частей, что очень важно при решении технологических задач. Конечно, если известна насыпная плотность порошка, тогда технологи могут легко рассчитать массу для одной дозы, порции или упаковки и тем самым определить величину дозировки для капсулятора или таблетпресса, а также для любого другого фасовочного оборудования.

Значение насыпной плотности определяется в соответствии со стандартом (ГОСТ 19440-94 «Порошки металлические. Определение насыпной плотности. Часть 1. Метод с использованием воронки. Часть 2. Метод волюмометра Скотта») с помощью прибора волюмометра, принцип действия которого основан на точном определении массы порошка, заполняющего мерную емкость. Волюмометр состоит из воронки с ситом и корпуса с несколькими наклонными стеклами, по которым порошок, пересыпаясь, падает в тигелек с измеренным объемом и весом.

Объемная или Насыпная плотность зависит от размера, формы, влажности и плотности частиц гранул или порошка. По значению этого показателя можно прогнозировать и рассчитывать объем матричных каналов. Процедуру измерения насыпной плотности порошковой смеси или монопорошка проводят на специальном приборе (рис. 1).

Производят навеску массой 5,0 г порошка. Точность навески до 0,001 г. Далее засыпают навеску в мерный цилиндр. Устанавливают на приборе амплитуду колебаний (35-40 мм) при помощи регулировочного винта. Устанавливают отметку по шкале и фиксируют положение при помощи контргайки. Далее, с помощью трансформатора устанавливают частоту колебаний. Частота устанавливается в интервале от 100 до 120 кол/мин, по счетчику. После включения прибора тумблером оператор следит за отметкой, по которой установлен уровень порошка в цилиндре. Как правило, при работе прибора в течение 10 минут, уровень порошка или смеси становится постоянным, и прибор необходимо отключить.

Насыпную плотность рассчитывают по формуле:

где: ρ н – насыпная плотность, кг/м 3 ;

m – масса сыпучего материала, кг;

V – объем порошка в цилиндре после уплотнения, м 3 .

В зависимости от насыпной плотности порошки классифицируют следующим образом:

ρ н > 2000 кг/м 3 – весьма тяжелые;

2000 > ρ н > 1100 кг/м 3 – тяжелые;

1100 > ρ н > 600 кг/м 3 – средние;

ρ н < 600 кг/м 3 – легкие.

Одним из приборов, на котором проводят измерение насыпной плотности (а также другие характеристики порошковой смеси или монопорошка), является прибор ВТ-1000.

Анализатор ВТ-1000 (Рис. 2) используется для определения свойств различных сыпучих материалов, связанных с текучестью. Порошок или порошковые смеси, по определению, являются двухфазными системами. Свойства поверхности частиц порошковой смеси или монопорошка, так же как и их плотность, все эти параметры определяет его поведение в потоке и их сыпучесть. Правильное определение параметров сыпучести очень важно для расчетов процессов обработки порошка, его упаковки, транспортировки и хранения.

С помощью ВТ-1000 (Рис.3) возможно определить не только насыпную плотность, но и дисперсность, угол падения, угол естественного откоса, угол на плоской пластине и плотность утряски. Из данных характеристик легко рассчитать угол разности, прессуемость, объем пустого пространства, сжимаемость, униформность. По характеристикам зафиксированным на приборе, можно рассчитать индекс Карра, что позволяет определить значения сыпучести и аэрируемости

(поведения порошка в аэродинамической струе).

Порошок засыпается в мерный цилиндр. Отношение занятого им объема к массе порошка является объемной или насыпной плотностью. Рис.3

2.1. Оборудование и материалы

Порошок ПЖРВ. Волюометр Скотта (рисунок 3). Кювета (толщина 4 мм, глубина 40,4 мм, объем V=26,5 см 3), весы рычажные. Штангенциркуль ШЦЦ-1-125.00 ПС, ГОСТ 166-89, погрешность измерения 0,03; весы ВЛА-200г-М, №608, погрешность от неравноплечности коромысла ≤2 гр., весы рычажные. ГОСТ – 19440 49.

Рис.3. Волюмометр Скотта

2.2. Теоретические данные

Насыпная плотность (ρ насып, г/см 3), есть объемная характеристика порошка, и представляет собой массу единицы его объема при свободной насыпке. Ее величина зависит от плотности упаковки частиц порошка при свободном заполнении ими какого – либо объема. Она тем больше, чем крупнее и более правильной формы частицы. Наличие выступов и неровностей на поверхности частиц, а так же увеличение поверхности в связи с уменьшением размера частиц повышает межчастичное трение, что затрудняет их перемещение относительно друг - друга и приводит к снижению насыпной плотности.

Величину, обратную насыпной плотности, называют насыпным объемом (V насып, см 3 /г), который представляет собой объем, занимаемый единицей массы порошка, при его свободной насыпке. Насыпная плотность порошка влияет на объемное дозирование и сам процесс формирования, а также на величину усадки при спекании (чем меньше насыпная плотность тем больше усадка).

При воздействии на свободно насыпанный порошок механических виброколебаний происходит уменьшение объема на 20-50%. Отношение массы порошка к величине этого нового, уменьшенного объема, называют плотностью утряски. Максимальная плотность утряски достигается на порошках со сферической формой частиц при минимальной шероховатости их поверхности.

Сущность метода – измерение массы определенного количества порошка, который в свободно насыпанном состоянии полностью заполняет емкость известного объема. Свободно насыпанное состояние получается при заполнении емкости путем последовательного прохождения порошка через систему наклонных пластин волюмометра Скотта. Отношение массы к объему – насыпная плотность.

2.3. Описание метода определения насыпной плотности

Некоторый объем порошка ПЖРВ насыпаем в верхнюю воронку волюмометра. Порошок в свободно насыпанном состоянии сыплется вниз, последовательно проходит через систему наклонных пластин волюмометра, заполняя при этом кювету, находящуюся под нижней воронкой. Образовавшаяся горка на поверхности снимается – поверхность выравнивается. Далее получившаяся масса порошка взвешивается на весах. Опыт проделывается два раза (таблица 2). Для каждого раза высчитывается значение ρ насып и V насып.

2.4. Результаты

Таблица 2. Значения насыпной плотности и объема для ПЖРВ

m к =153,7 г V к =26,5 см 3
ρ насып, г/см 3 V насып, см 3 /г
m П =72,42 г 2,733 0,3659
m П =77,3 г 2,917 0,3428
Ср.знач 2,825 0,3544

Где m к - масса кюветы, V к - объем кюветы, m П – масса порошка.

Вывод : проведены измерения насыпной плотности для порошка ПЖРВ, получившиеся значения укладываются в интервал теоретических: 2,71-2,90 г/см 3 .

Прессуемость порошков

3.1. Оборудование и материалы

Порошок ПЖРВ. Ручной гидравлический пресс 10 ТНС «Karl Zeiss Jena». Цилиндрические пресс-формы. Весы рычажные.

3.2. Теоретические данные

Уплотняемость порошка показывает его способность изменять начальную плотность упаковки частиц в процессе прессования. Эта характеристика оценивается по плотности прессовок, изготовленных при различных давлениях прессования в цилиндрической пресс-форме.

Прессуемость порошка оценивается его способностью образовывать прессовку под воздействием на него давления. Эта характеристика дает качественную оценку свойств порошка, комплексно связанную с уплотняемостью и формуемостью.

Хорошая прессуемость облегчает и удешевляет процесс формирования порошка. Чем выше насыпная плотность порошка, тем лучше прессуемость.

3.3. Описание способа прессования

Цилиндрическую пресс-форму заполнить порошком определенной массы (m=8,5 г для всех последующих испытаний берется та же масса). Пресс-форма помещается на предметный столик, находящийся под пуансоном. Далее пуансон опускается на пресс-форму и крепко фиксируется рычагами сверху. Затем выбирается давление и выдерживается на пресс-форме около 5 секунд. После этого давление необходимо снять, отжав рычаг рядом с монометром. Поднять пуансон и достать пресс-форму. Снять с пресс-формы верхний клапан и поставить на его место цилиндр, для того чтобы прессовка не выпала из пресс-формы. Далее так же установить пресс-форму под пуансон и подавать давление до тех пор, пока прессовка (рисунок 4) не выйдет. После, измерить размеры прессовки (диаметр D и высоту H), записать в таблицу 3.

Измерения проводились 13 раз: 12 из них с повышением давления на шаг, равный 10, и один для определения порога прессования (при Р=8).

Рис.4. Форма прессовки

3.4. Результаты

Таблица 3. Размеры полученных прессовок

Давление Р, дел. Диаметр D,мм Высота H, мм Объем F, кН Pуд, МПа
16,6 1876,46 5,45 0,047419
1582,56 11,95 0,103975
12,11 12,41 1428,66 18,45 0,16053
11,56 1258,83 24,95 0,217085
12,14 11,43 1322,37 31,45 0,27364
11,35 1283,00 37,95 0,330196
12,11 11,29 1299,73 44,45 0,386751
12,18 10,35 1205,33 50,95 0,443306
12,24 10,28 1209,00 57,45 0,499861
12,16 10,05 1166,55 63,95 0,556417
12,12 10,10 1164,65 70,45 0,612972
12,15 10,22 1184,33 76,95 0,669527
8 (порог) 12,10 16,14 4,15 0,036108

m (навески порошка ПЖРВ) = 8,5 г

Объем вычисляется по формуле

Рис.5. Зависимость размеров прессовок от давления

Рис.6. Зависимость объема прессовки от давления

Для характеристики поведения порошков при прессовании используют коэффициент уплотнения k , равный отношению плотности прессовки при данном давлении P к насыпной плотности:

k = γ пр / γ нас.

Таблица 4. Расчет коэффициента уплотнения

Давление Р, Па Объем, см 3 ρ, г/см 3 коэффициент уплотнения k
1(порог) 1,855 4,58221 1,622021
1,876 4,530917 1,603864
1,582 5,372946 1,901928
1,429 5,948216 2,105563
1,259 6,75139 2,389873
1,322 6,429652 2,275983
1,283 6,625097 2,345167
1,3 6,538462 2,3145
1,205 7,053942 2,496971
1,209 7,030604 2,488709
1,167 7,283633 2,578277
1,165 7,296137 2,582703
1,184 7,179054 2,541258


Рис.7. Зависимость коэффициента уплотнения от приложенного давления

Вывод : прессуемость порошков была проведена на гидравлическом прессе «Karl Zeiss Jena». После получения прессовок были замерены их размеры и вычислен объем. В соответствии с таблицей построен график зависимости объема прессовок от приложенного давления - с увеличением давления объем уменьшается.

Усадка прессовок

После проведения прессовки порошка, получившиеся прессовки подвергли спеканию на установке СНВЭ - 131 при температуре 1200 0 С, при Р=10 -2 Па, 1 час. Далее была вычислена усадка прессовок.

4.1. Оборудование и материалы

Прессовки порошка ПЖРВ (13 шт.). Штангенциркуль ШЦЦ-1-125.00 ПС, ГОСТ 166-89, погрешность измерения 0,03; весы ВЛА-200г-М, №608, погрешность от неравноплечности коромысла ≤2 гр.

4.2. Полученные результаты

Необходимо измерить размеры прессовок после спекания (таблица 5). Затем сравнить объемы до и после усадки (таблица 6), вычислив тем самым величину усадки.

Таблица 5. Размеры прессовок после спекания

Диаметр D Высота H Объем
12,08 16,48 1887,821
12,10 14,05 1614,792
12,10 12,42 1427,454
12,13 11,81 1364,084
12,15 11,26 1304,85
12,14 11,2 1295,91
12,11 11,17 1285,912
12,12 10,41 1200,399
12,16 10,18 1181,638
12,19 10,10 1178,144
12,14 10,01 1158,087
12,13 10,07 1163,11
13 (Р=8) 12,10 16,10 1850,403

Таблица 6. Объемная усадка

Объем до спекания Объем после спекания Объемная усадка, %
1876,464 1887,821 -0,605
1582,56 1614,792 -2,037
1428,663 1427,454 0,0846
1258,829 1364,084 -2,361
1322,371 1304,85 1,325
1283,004 1295,91 -0,935
1299,726 1285,912 1,0628
1205,326 1200,399 0,4088
1208,998 1181,638 2,263
1166,549 1178,144 -0,994
1164,652 1158,087 0,5637
1184,331 1163,11 1,7918
1850,403 0,2478

Таблица 7. Усадка за счет изменения высоты прессовок

Н до спекания Н после спекания Линейная усадка, %
16,6 16,48 0,7229
14,05 -0,357
12,41 12,42 -0,081
11,81 1,5833
11,43 11,26 1,4873
11,35 11,2 1,3216
11,29 11,17 1,0629
10,35 10,41 -0,58
10,28 10,18 0,9728
10,05 10,10 -0,498
10,10 10,01 0,8911
10,22 10,07 1,4677
16,14 16,10 0,2478

Рис.8. Зависимость усадки по объему и по высоте

Вывод : после проведения спекания размеры образцов изменились - диаметр увеличился, а высота соответственно уменьшилась. Построен график зависимости усадки по объему и по высоте - величина усадки монотонно уменьшается.

Насыпная плотность - свободно насыпанного порошка, зависящая от гранулометрического состава и формы частиц. Насыпную плотность порошка определяют прибором - волюмометром, засыпав порошок в мерную колбу объемом 25 см 3 с последующим взвешиванием и расчетом по формуле: γ нас = (M 2 -M 1)/V где M 1 - мерной колбы; M 2 - масса мерной колбы с порошком; - мерной колбы. Насыпную плотность порошка учитывают при расчете объема полости матрицы для прессования;
Смотри также:
-
-
-
-
-
-
-
-
-

Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Смотреть что такое "насыпная плотность" в других словарях:

    насыпная плотность - Определенная масса сухого сыпучего материала в единице объема, измеренная в условиях свободного неслежавшегося состояния сухого сыпучего груза. [ГОСТ Р 52202 2004 (ИСО 830 99)] Тематики контейнеры грузовые Обобщающие термины контейнеры для… …

    насыпная плотность - 3.3 насыпная плотность: Масса единицы объема материала с порами и пустотами. Источник: ГОСТ 10832 2009: Песок и щебень перлитовые вспученные. Технические условия оригинал документа … Словарь-справочник терминов нормативно-технической документации

    насыпная плотность - piltinis tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Laisvai supiltos birios medžiagos vienetinio tūrio masė. Matavimo vienetas: kg/m³. atitikmenys: angl. apparent density; bulk density; packed density vok. Schüttdichte, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    насыпная плотность - piltinis tankis statusas T sritis chemija apibrėžtis Laisvai supiltos birios medžiagos vienetinio tūrio masė (kg/m³). atitikmenys: angl. bulk density rus. насыпная плотность … Chemijos terminų aiškinamasis žodynas

    насыпная плотность угля - Ндп. насыпная масса угля Отношение массы свеженасыпанного угля к его объему, включая объем пор и трещин внутри зерен и кусков, а также объем пустот между ними, определяемому в установленных условиях заполнения емкости. [ГОСТ 17070 87]… … Справочник технического переводчика

    насыпная плотность минерального удобрения - Отношение массы минерального удобрения к его объему. Примечание Насыпная плотность минерального удобрения может быть с уплотнением и без уплотнения. [ГОСТ 20432 83] Тематики удобрения Обобщающие термины качество минеральных удобрений … Справочник технического переводчика

    насыпная плотность огнеупорного сырья [неформованного огнеупора] - Отношение массы огнеупорного сырья [неформованного огнеупора] к его объему, выраженное в граммах на кубический сантиметр. Примечание Различают насыпную плотность свободно насыпанного или после утряски огнеупорного сырья [неформованного огнеупора] … Справочник технического переводчика

    Насыпная плотность огнеупорного сырья - [неформованного огнеупора] – отношение массы огнеупорного сырья [неформованного огнеупора] к его объему, выраженное в граммах на кубический сантиметр. Примечание. Различают насыпную плотность свободно насыпанного или после утряски… … Энциклопедия терминов, определений и пояснений строительных материалов

    насыпная плотность измельченной древесины - Отношение массы измельченной древесины к ее объему. [ГОСТ 23246 78] Тематики древесина измельченная … Справочник технического переводчика

    насыпная плотность смеси - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN mixture bulk density … Справочник технического переводчика

Очень часто наших клиентов мучает вопрос как перевести кубические метры в тонны и наоборот. На данной странице мы попытались расмотреть два способа как это сделать.

Коэффициент перевода сыпучих материалов из м3 в тонны: данные коэфициенты являются примерными т.к. для точного перевода необходимо знать влажность материала. Для более точного определения коэффициента перевода можно провести простейший эксперимент. В 10 литровое ведро (его объем составлятет 0,01 м3) засыпьте необходимый вам материал и произведите взвешивание. Причём предварительно необходимо взвешать пустое ведро. По формуле Рн=(М2-М1)/V где Рн - коэффициент насыпной плотности, М2 - масса мерного сосуда вместе с материалом, М1 - масса пустого мерного сосуда, V - объём мерного сосуда.

Таблица коэффициентов перевода м3 в тонны для сыпучих материалов:

Наименование материала Объём Коэффициент Вес
Песок речной модуль крупности 1,6-1,8 мм 1 м3 1,6 1,6 тн
Песок карьерный сухой фракция о,8-2 мм 1 м3 1,5 1,5 тн
Кварцевый песок (дроблёный) фракция 0,8-2 мм 1 м3 1,4 1,4 тн
Щебень гранитный фракция 5-20 мм 1 м3 1,36 1,36 тн
Крошка гранитная фракция 2-5 мм 1 м3 1,4 1,4 тн
Щебень гравийный фракция 5-20 мм 1 м3 1,34 1,34 тн
Щебень известняковый фракция 20-40 мм 1 м3 1,25 1,25 тн
Цемент ПЦ 500 Д0 1 м3 1,3 1,3 тн
Керамзит М 200 1 м3 0,2 0,2 тн
Керамзит М300 1 м3 0,3 0,3 тн
Керамзит М400 1 м3 0,4 0,4 тн
Соль техническая Тип С помол №3 1 м3 1,2 1,2 тн
Пескосолянная смесь 70/30 1 м3 1,48 1,48 тн

Насыпная плотность сыпучего строительного материала – это его плотность в неуплотненном состоянии. Она учитывает не только объем самих частиц материала (песчинок или отдельных камней гравия), но и пространство между ними, так что насыпная плотность меньше, чем плотность обычная. При уплотнении сыпучего материала, его плотность становится больше и перестает быть насыпной. Цемент в мешке, отвал щебня, или шесть кубов песка в кузове грузовика – все они находятся в неуплотненном состоянии и имеют свою насыпную плотность. Знать ее необходимо для того, чтобы связывать объем и массу таких материалов, ведь цены за их поставку могут быть в рублях, как за тонну, так и за кубометр. Точно так же количество этих материалов, например, их пропорции для приготовления бетона, могут понадобиться и в тоннах, и в кубометрах.

Плотность песка, пустотность и влажность – это взаимосвязанные характеристики песка, которые имеют важное значение при подборе материалов для приготовления бетона. Плотность песка бывает: истинная – это плотность высушенного песка и насыпная – плотность поставляемого песка. Такой показатель, как насыпная плотность изменяется в зависимости от влажности песка. При уменьшении плотности – возрастает пустотность, что приводит к повышенному расходу вяжущих, а следственно к увеличению расходов.
Плотность песка, при росте влажности до примерно 10% очень резко снижается, что объясняется тем, что влага, обволакивая каждую песчинку, заставляет их слипаться в комки и это приводит к увеличению общего объема. После того, как влажность достигнет десяти процентов, дальнейший ее рост приводит, наоборот, к увеличению плотности, поскольку вода начинает заполнять пространство между зернами песка, вытесняя воздух. Таким образом, если производится дозировка составляющих бетона по объему – этот фактор следует учитывать в обязательном порядке. Влажность песка можно определить, измерив разницу в массе песка до и после высушивания и разделив, полученный результат на первоначальную массу навески песка (обычно 1 кг.) Сушат песок на металлическом противне до полного высушивания (когда прекратится уменьшаться масса пробы).
Для того, чтобы определить, каков объем поставки песка, на месте приемки определяют его насыпную плотность, что позволит перевести массу поставки в кубометры.
Вычисляют насыпную плотность песка следующим образом: песок, без всякой предварительной обработки (высушивание, уплотнение), насыпают совком в мерный цилиндр, вместимостью 10 литров (ведро), с высоты 10 сантиметров, до тех пор пока цилиндр не заполнится «с горкой». Эту «горку» срезают вровень с краем мерного цилиндра, стараясь, опять же не уплотнять песок. После этого производится взвешивание пробы песка. Плотность песка будет частым от деления массы песка на объем, в нашем случае 10 литров, т.е. 0,01 кубов песка. Естественно массу песка измеряют без учета массы сосуда. Измерения проводят два раза, а окончательным значением будет сумма замеров, деленная на 2.

Как перевести вес в кубы и наоброт - существует два способа. Первый воспользоваться условными коэффициентами перевода. Но в этом случае вы должны понимать что результат полученный таким образом будет примерным. Второй способ провести замеры с помощью 10 литрового ведра именного того материала который вы используете в данный момент это гораздо хлопотное мероприятие, но оно принесёт вам более точный результат.