Электрооборудование

Элементы режущей части сверла. Спиральные сверла

Элементы режущей части сверла. Спиральные сверла

Рис. 1 Части сверла

Основные части сверла. Режущая часть (рис.1). Калибрующая (направляющая, транспортирующая) часть. Эти две части образуют рабочую часть сверла. Соединительная часть (шейка). Хвостовая часть.

Рабочая часть совместно с режущей и калибрующей частями образует две винтовые канавки и два зуба (пера), обеспечивающих процесс резания.

Калибрующая часть сверла, предназначенная для удаления стружки из зоны резания. Калибрующая часть по всей своей длине имеет ленточку и совместно с ней служит для направления сверла в отверстии.

Шейка у сверл служит для выхода шлифовального круга, а также для маркировки сверл.

Хвостовая часть бывает цилиндрической или конической с конусом Морзе. На конце хвостовой части имеется поводок или лапка.

Конструктивные элементы сверла

Сверло имеет сложную конструкцию и характеризуется диаметром и длиной сверла, шириной и высотой ленточки, диаметром спинки, центральным углом канавки, шириной зуба (пера) и диаметром (толщиной) сердцевины.

Диаметр сверла (d) . Выбор диаметра сверла зависит от технологического процесса получения данного отверстия.

Ленточка сверла. Обеспечивает направление сверла в процессе резания, уменьшает трение об поверхность отверстия и уменьшает теплообразование.

Ширина ленточки бывает от0,2–2 мм в зависимости от диаметра сверла. Ширину ленточки выбирают:

при обработке легких сплавов равной

f =1,2+0,2682 ln { d -18+[(d -18) 2 +1] 1/2 } ;

при обработке других материалов

f =(0,1…0,5) d 1/3 .

Высота ленточки обычно составляет 0,025 d мм.

Для уменьшения трения при работе на ленточках делают утонение по направлению к хвостовику, т.е. обратную конусность по диаметру на каждые 100 мм длины. Для быстрорежущих сверл обратная конусность по диаметру составляет 0,03-0,12 мм. Для твердосплавных сверл – 0,1-0,12 мм.

Сердцевина сверла влияет на прочность и жесткость, характеризуется диаметром сердцевины –d о . Величина диаметра сердцевины выбирается в зависимости от диаметра сверла. Для повышения жесткости и прочности сверла его сердцевина утолщается к хвостовику на 1,4-1,8 мм на каждые 100 мм длины.

Перемычка сверла оказывает влияние на процесс резания.

Режущие элементы сверла. Рабочая часть сверла (см. рис.) имеет шестьлезвий (режущих кромок). Двеглавные режущие кромки (1-2, 1’-2’). Двевспомогательных кромки (1-3, 1’-3’) расположенных на калибрующей части и служащие для направления сверла в процессе работы. Двепоперечные кромки (0-2, 0-2’) образующие перемычку. Все эти лезвия расположены на двух зубьях и имеют непрерывную пространственную режущую кромку, состоящую из пяти разнонаправленных отрезков (3-1, 1-2, 2-2’, 2’-1’, 1’-3’).

Геометрические параметры сверла

Угол при вершине сверла - 2 . Для быстрорежущих сверл 118-120 о, для твердосплавных 130-140 о. Угол влияет на производительность и стойкость сверла, на силы резания, длину режущей кромки и элементы сечения стружки.

Угол наклона поперечного лезвия (перемычки)-(=50-55 о ).

Угол наклона винтовых канавок сверла оказывает влияние на прочность, жесткость сверла и стружкоотвод.

Рекомендуется для хрупких материалов = 10-16 о, для обработки материалов средней прочности и вязкости -= 25-35 о, для обработки вязких материалов -= 35-45 о.

Угол наклона винтовой канавки в данном сечении х определяется по формуле

где r – радиус сверла;

r х – радиус сверла в рассматриваемой точке.

Шаг винтовых канавок р .

где D – диаметр сверла.

Диаметр сердцевины сверла – d o или К принимают равнымК =(0,125…0,145) D .

Для упрочнения инструмента диаметр К увеличивается к хвостовику сверла на 1,4 – 1,8 мм на 100 мм длины.

Диаметр спинки зуба сверла q выбирают по зависимостиq = (0,99…0,98) D .

Профиль стружечных канавок.

Угол стружечной канавки θ при обработке легких сплавов равен 116 о, других материалов 90…93 о.

Радиусы дуг , образующих профиль винтовой канавки сверла принимаются равнымиR к =(0,75…0,9) D , r к =(0,22…0,28) D , а центры дуг лежат на прямой, проходящей через центр поперечного сечения сверла.

Ширина пера. Различают ширину пера в нормальном к оси сечениюВ о и в сечении, нормальном направлению стружечной канавкиВ , которую указывают на чертеже инструмента. Ширину пераВ о определяют в нормальном к оси сверла сечении по формуле:

Передний угол главных режущих кромок . Угол является величиной переменной, наибольшее его значении на периферии сверла, а наименьшее – в центре. Угол может быть определен в нормальномN - N ( N ) сечении. Максимальное значение находится по формуле

Передние углы на поперечной режущей кромке имеют большие отрицательные значения (могут достигать -60 о). Меняются по длине кромки. Наибольшее значение в центре сверла.

Это приводит к следующему: режущая кромка не режет, а вдавливается в металл. На это тратится 65% осевой силы резания и 15% крутящего момента. Для уменьшения осевой силы уменьшают угол при вершине сверла, при этом крутящий момент возрастает и улучшаются его режущие свойства.

Задний угол главных режущих кромок - образуется на режущей части сверла на главных и поперечных режущих кромках. Является переменным и измеряется в нормальном и цилиндрическом сечениях.

Минимальное значение принимает на периферии сверла, максимальное – в центре. Эпюра углов показана на рисунке. Для сверл из быстрорежущих сталей принимается = 8-15 о. Для твердосплавных= 4-6 о.

Изменение передних и задних углов в процессе резания. В процессе резания передние и задние углы меняются и отличаются от углов заточки. Их называют кинематическими или действительными углами резания. Наибольшее значение при сверлении имеет кинематический задний угол.

Кинематический задний угол к изменяется вдоль главной режущей кромки сверла. Зависит от подачи и радиуса рассматриваемой точки режущего лезвия. Для обеспечения достаточного значения заднего угла в процессе резания его делают переменным вдоль режущей кромки. На периферии 8-14 о, а у сердцевины 20-25 о в зависимости от диаметра сверла.

Формы задней поверхности сверл. Различают одноплоскостные и двухплоскостные формы задней поверхности.

Оформление зад­ней поверхности по плоскости. Это наи­более простой одноплоскостной способ заточки сверл, при нем необходи­мо иметь задние углы не менее 20 - 25°. При этом способе заточки значения зад­него угла зависят от угла при вершине сверла2 и заднего угла на периферии.

Недостатком таких сверл является прямолинейная поперечная кромка, кото­рая при работебез кондуктора не обеспе­чивает правильного центрирования сверла.

К
двухплоскостной форме задней поверх­ности сверл относится коническая, цилиндрическая и винтовая форма задней поверхности.

Такая форма задней поверх­ности позволяет получить независимые значения заднего угла на периферии , угла при вершине2 и угла наклона поперечной кромки.

Коническая форма задней поверхности сверла является участком конической по­верхности.

Для образования задних углов вершина конуса смещается относительно оси сверла на вели­чину Н , равную или больше радиуса пере­мычки, иось конуса наклонена к продоль­ной оси сверла под углом.

Ци­линдрическая форма задней поверхности сверла является участком цилиндрической поверхности. Этот метод применяют редко.

Винтовая форма задней поверхности сверла является развертывающейся винто­вой поверхностью. Она позволяет полу­чить рациональное распределение значений задних углови более выпуклую поперечную кромку сверла, что улучшает самоцентрирование сверла при работе.

У таких сверл увеличиваются значения задних углов на поперечной режущей кромке, что приво­дит к уменьшению осевых нагрузок. Большим преимуществом винтовой заточки является возможность автоматизации процесса заточки.

Назначение и основные типы сверл | | Конструктивные особенности твердосплавных сверл

ИНСТРУМЕНТЫ ДЛЯ ОБРАБОТКИ ОТВЕРСТИЙ

Конструктивные элементы спиральных сверл

Сверло - двухзубый режущий инструмент. Зуб сверла представляет собой тело клиновидной формы, ограниченное передней и задней поверхностью.

У спиральных сверл передняя поверхность, по которой сходит стружка при обработке, является винтовой поверхностью канавки (рис. 45).

Углом наклона винтовой канавки ОМЕГА называется угол, образуемый осью сверла и касательной к винтовой линии пересечения передней поверхности сверла с цилиндрической поверхностью, ось которой совпадает с осью сверла и диаметр которой равен диаметру сверла.

Поверхность зуба сверла, обращенная к поверхности резания (поверхности, по которой происходит отделение стружки от заготовки), называется задней поверхностью. Задние поверхности воспроизводятся при заточке сверла и их формы определяются принятым методом заточки. Задние поверхности на спиральных сверлах наиболее часто затачиваются по коническим, винтовым и плоским поверхностям. Линии пересечения передних и задних поверхностей сверла образуют режущую кромку. У обычных спиральных сверл прямолинейные режущие кромки и ось сверла являются скрещивающимися прямыми. Расстояние от оси сверла до режущей кромки равно половине диаметра сердцевины сверла. Угол 2ФИ между режущими кромками, которые располагаются симметрично относительно оси сверла, называют углом при вершине.

Линия пересечения задних поверхностей обоих зубьев сверла образует поперечную режущую кромку, расположенную в центральной зоне сверла.

Угол наклона поперечной кромки находится между проекциями поперечной кромки и режущей кромки на плоскость, перпендикулярную к оси сверла.

Задний угол АЛЬФА между задней поверхностью и поверхностью резания измеряется у сверл обычно в цилиндрическом сечении, концентричном оси сверла.

Угол при вершине сверла 2ФИ играет роль главного угла в плане. С увеличением угла при вершине сверла уменьшается активная длина режущей кромки и увеличивается толщина среза, что приводит к увеличению усилий, действующих на единицу длины режущих кромок, и способствует повышению интенсивности износа сверла.

Однако при увеличении угла 2ФИ сечение среза сохраняется неизменным и уменьшается степень деформации срезаемого слоя. При этом падает величина суммарной составляющей главного усилия резания, действующего по направлению скорости резания, и определяющего, величину крутящего моменту, что благоприятно воздействует на работу такого нежесткого инструмента, как спиральные сверла. Суммарное же осевое усилие подачи сверла при увеличении угла 2ФИ возрастает. Это объясняется изменением положения относительно оси сверла плоскости, нормальной к режущей кромке, в результате чего меньшая часть усилий, действующих на режущие кромки сверла, взаимно уравновешивается. Кроме того, передние углы на поперечной кромке с увеличением угла при вершине уменьшаются, это ухудшает внедрение этой кромки в материал заготовки и приводит к возрастанию осевых усилий при сверлении. В результате возрастает опасность появления продольного изгиба сверла и значительных его деформаций. Опыты показывают, что при уменьшении угла 2ФИ от 140 до 90° осевое усилие подачи снижается на 40-50%, а крутящий момент увеличивается на 25-30%.

С увеличением угла при вершине уменьшается угол между режущей кромкой и кромкой ленточки, что приводит к ухудшению теплоотвода от наиболее интенсивно изнашивающейся периферийной зоны сверла.

При сравнительно небольших подачах, используемых в процессе сверления, уменьшение угла при вершине 2ФИ может привести к чрезвычайно малым значениям толщин среза, соизмеримым с радиусом округления режущей кромки. Это приводит к неустойчивым результатам и чаще всего к понижению стойкости инструмента.

Угол при вершине 2ФИ спирального сверла влияет на величины передних углов и на изменение их на режущей части, а также на направление и условия отвода стружки по винтовым канавкам. Известно, что нормальная работа сверла может иметь место тогда, когда надежно обеспечивается вывод стружки по канавкам и не наблюдается ее защемление и пакетирование. Как показывают исследования, увеличение угла при вершине 2ФИ приводит к более плавному изменению передних углов вдоль режущей кромки, что благоприятно отражается на режущей способности сверл.

Таким образом, угол при вершине сверла 2ФИ весьма противоречиво воздействует на процесс сверления и его оптимальное значение, зависит от многих факторов, предопределяющих характер работы сверла. Поэтому в литературе можно встретить различные данные и рекомендации по выбору угла при вершине сверла.

Следует учитывать, что подобно резцам с различными углами в плане, можно применять для заданных условий работки сверла с различными углами при вершине 2ФИ и достигать при атом удовлетворительных результатов.

Базируясь на экспериментальные данные и производственный опыт, угол 2ФИ при вершине сверла ориентировочно можно выбирать в зависимости от обрабатываемого материала.

Угол ОМЕГА наклона винтовой канавки измеряется на наружном диаметре сверла. При известном шаге h винтовой канавки и диаметре сверла Д угол наклона ОМЕГА определяется по формуле:

Винтовые линии пересечения винтовой канавки сверла с цилиндрическими поверхностями, концентричными оси сверла, имеют переменный угол наклона (ОМЕГА х) определяемый по соотношению:

Где R - радиус сверла;

Rx-радиус рассматриваемого цилиндрического сечения, концентричного оси сверла или, иными словами, расстояние от рассматриваемой точки режущей кромки до оси сверла. Как видно, угол наклона винтовых линий, расположённых на передней поверхности канавки сверла, уменьшается при приближении к оси сверла. Величины углов ОМЕГА для различных точек режущих кромок сверла при изменении угла наклона винтовой канавки от 15 до 60° приведены в табл. 5.

Из таблицы видно, что изменение угла наклона винтовой канавки ОМЕГА сильно влияет на величины углов ОМЕГА х на периферии.

Таблица 5. Изменение угла ОМЕГА х, град, на режущей части сверла
У сердцевины же сверла изменение угла ОМЕГА вызывает небольшие изменения углов ОМЕГА х, т. е. за счет изменения угла ОМЕГА нельзя в большой степени влиять на изменения геометрии центральной зоны сверла. Угол наклона винтовой канавки предопределяет величины передних углов на режущей части, особенно на периферии сверла. С увеличением угла ОМЕГА передний угол в исследуемой точке кромки также возрастает. Это приводит к уменьшению усилий резания, способствует лучшему отводу стружки.

При построении известны шаг винтовой канавки, диаметр сердцевины, ширина канавки, форма и расположение режущей кромки сверла. На рис. 53 рассмотрено сверло с прямолинейной режущей кромкой, составляющей с осью угол ФИ. Построение выполняется в системе плоскостей проекций V/H. Плоскость H перпендикулярна оси сверла, а плоскость V параллельна режущей кромке АВ (ее проекции а"b" и ab). Через периферийную точку А режущей кромки проведено сечение I, перпендикулярное оси сверла, линия пересечения которого с винтовой поверхностью канавки будет искомым торцовым сечением канавки сверла. Чтобы отыскать произвольную точку торцового сечения канавки сверла, на его режущей кромке выберем произвольную точку С. Эта точка при винтовом движении режущей кромки АВ опишет в пространстве винтовую линию СС1, расположенную на поверхности канавки. Винтовая линия СС1 пересекает сечение / в точке С1, которая будет точкой торцового сечения сверла. Винтовое движение кромки АВ, а, следовательно, и рассматриваемой точки С, разложим на поступательное движение вдоль оси сверла и кинематически связанное с ним вращательное движение вокруг оси сверла. Если обозначить величину поступательного перемещения вдоль оси через х, то соответствующий этому перемещению угол поворота будет равен:

Где H - шаг винтовой канавки сверла.

Точка С за время перемещения на величину h вдоль оси сверла до сечения I повернется вокруг оси сверла на угол

Этот угол между радиусами, соединяющими горизонтальные проекции точек С1 и С с центром сверла в истинную величину изображается в проекции на плоскости H. Поэтому, повернув вокруг оси сверла точку С на угол ЭПСЕЛОН найдем искомую горизонтальную проекцию C1 точки торцового сечения канавки сверла.

Аналогично точке С, рассматривая последующие точки режущей кромки, определяются соответствующие им точки торцового сечения канавки, совокупность которых и будет профилем рабочего участка винтовой канавки сверла в сечении, перпендикулярном его оси.

Для облегчения построения на режущей кромке целесообразно выбирать ряд равноудаленных точек С, Е, К, отстоящих от сечения / на расстоянии h, 2h, 3h. Тогда углы поворота горизонтальных проекций этих точек вокруг оси сверла будут соответственно равны ЭПСЕЛОН h, 2ЭПСЕЛОН h, З ЭПСЕЛОН h. Повернув горизонтальные проекции точек с, е, к вокруг оси сверла на углы ЭПСЕЛОН h, 2ЭПСЕЛОН h, З ЭПСЕЛОН h получим искомые точки c1, e1, k1 торцового сечения канавки сверла. Полученную кривую можно заменить дугой окружности радиуса R1 с центром в точке О1.

Вспомогательная часть профиля канавки сверла выбирается таким образом, чтобы обеспечить получение заданной ширины канавки, т. е. угла ТАУ, плавного сопряжения кривых профиля. Это способствует предотвращению трещин при термообработке сверла. Построив угол ТАУ, найдем вторую крайнюю точку m расположенную на вспомогательной части профиля. Примем, что вспомогательная часть профиля очерчивается по дуге окружности радиуса R2. Чтобы эта окружность касалась сердцевины сверла и окружности R1 в точке их соприкосновения t ее центр O2 должен лежать на прямой ОО2. С другой стороны, чтобы окружность R2 проходила через точки t, т ее центр O2 должен лежать на перпендикуляре к отрезку mt, проведенному через его середину. Поэтому точка пересечения рассматриваемого перпендикуляра и прямой O1О будет центром O2 второй окружности профиля канавки, радиус которой R3 = О2t = О2m.

Рассмотрение найденного профиля торцового сечения сверла показывает, что вспомогательный участок профиля сверла заканчивается в точке т острым углом.

Некоторые исследователи, изучая прочность сверл, пришли к выводу, что материал сверла в рассматриваемых углах практически не включается в работу и их необходимо округлять, что способствует лучшему использованию материала сверла, снижает концентрацию напряжений и повышает сопротивление кручению.

Для уменьшения трения сверла о поверхность отверстия на его зубьях по всей длине срезается спинка с оставлением небольшой шлифованной ленточки. Ленточка служит для направления сверла в процессе работы. На величине приблизительно равной половине подачи кромка ленточки, примыкающая к главным режущим кромкам, выполняет роль вспомогательной кромки и формирует поверхность отверстия. На этом участке направляющая ленточка служит вспомогательной задней поверхностью с задними углами, равными нулю.

Ширина направляющей ленточки оказывает значительное влияние на работу сверла. С увеличением ширины ленточки улучшается направление сверла, что благоприятно сказывается на его работе. Однако в этом случае возрастает трение их о стенки отверстия, что увеличивает интенсивность износа сверл и понижает их стойкость.

Опыты показывают, что с повышением жесткости сверл, например за счет роста диаметра сердцевины, увеличение ширины ленточки существенно не влияет на виброустойчивость и направление сверла в отверстии. В этом случае можно выбирать небольшие значения ширины направляющей ленточки. Однако при чрезмерно малых величинах ширины ленточки, особенно при обработке труднообрабатываемых материалов, прочность направляющих ленточек в зоне резания настолько снижается, что происходит их быстрое разрушение, увеличивается зона трения и стойкость инструмента снижается.

Стандартные сверла универсального назначения диаметром 0,25-0,5 мм имеют полностью шлифованную спинку, т. е. у них ширина ленточки равна ширине зуба. У сверл диаметром от 1 до 50 мм ширина ленточек колеблется от 0,2 /ш до 2 мм.

С целью увеличения точности обработки отверстий применяют сверла с четырьмя ленточками по две на каждом зубе. У таких сверл ширина дополнительной ленточки берется на 30-40% меньше ширины основной ленточки.

Для уменьшения трения ленточек о стенки отверстия диаметр сверла уменьшают по направлению к хвостовику, т. е. выполняют сверла с обратной конусностью. Опыты показывают, что с увеличением обратной конусности стойкость сверл первоначально возрастает, а затем, достигнув максимального значения, снижается. Это происходит в результате уменьшения трения сверла о стенки отверстия. Дальнейшее увеличение об¬ратной конусности не влияет на трепне сверла о стенки отверстия, а ослабляет режущие кромки на периферии сверла, что способствует возрастанию интенсивности износа. Обратная конусность вли¬яет на направление сверла, т. е. на жест¬кость и виброустойчивость системы, что особо важно для сверл малого диаметра. У них, как показывают опыты, целесообразно выбирать уменьшенные значения обратной конусности. Степень влияния обратной конусности зависит от величины других параметров, влияющих на жесткость сверла. Поэтому у сверл с утолщенной сердцевиной можно выбирать увеличенные величины обратной конусности.

Для стандартных сверл универсального назначения на 100 мм длины:

Указанные величины обратной конусности можно принимать и при проектировании специальных сверл.

Для сверления отверстий под штифты конусностью 1:50 применяют конические сверла (рис. 54).

Кромка ленточки таких сверл имеет прямую конусность, соответствующую конусности просверленного отверстия, выполняет роль режущей кромки и формирует коническую поверхность отверстия. Поэтому у конических сверл, на ленточках по всей их длине затачивается задний угол величиной 8-18°, подтачивается поверхность винтовой канавки и создается передний угол. На ленточках в шахматном порядке выбираются стружкоразделительные канавки с шагом 8-12 мм.

Длина рабочей части сверла существенно влияет на его устойчивость в процессе сверления и стойкость. Исследования показывают, что с увеличением в определенных пределах длины сверла стойкость его уменьшается примерно по закону прямой, после чего наблюдается резкое падение стойкости. Влияние длины сверла на его стойкость особенно заметно на сверлах малого диаметра, у которых соотношение длины рабочей части к диаметру достигает величины 15- 20, а также при сверлении труднообрабатываемых материалов. При сверлении конструкционных сталей и чугунов стойкость при увеличении длины вылета сверла снижается в меньшей мере. Очевидно резкое уменьшение стойкости соответствует критическому значению допустимой нагрузки, возникающей в результате действия осевого усилия и крутящего момента на устойчивость сверла.

Известно, что величины усилий резания, действующих на сверло , зависят от принятых режимов резания. Поэтому необходимо при выборе режимов сверления учитывать длину вылета сверла и соответственно уменьшать скорость и подачу при возрастании длины вылета сверла. При сверлении труднообрабатываемых материалов усилия резания имеют увеличенные значения и соответственно этому уменьшаются возможные допустимые величины вылета сверла.

С точки зрения стойкости во всех случаях целесообразно применять сверла с минимально возможной длиной вылета. Следует учитывать, что при большом выходе из строя сверл за счет их поломок уменьшение длины вылета сверла повышает стойкость и работоспособность инструмента.

Для установки и закрепления в шпинделе станка спиральные сверла наиболее часто имеют цилиндрический или конический хвостовик. Цилиндрический хвостовик наиболее прост в изготовлении, сверла с цилиндрическим хвостовиком могут устанавливаться в шпиндель сверильного станка с помощью разрезной конической переходной втулки с цилиндрическим центральным отверстием. При установке такой втулки в шпиндель станка она сжимается и плотно охватывает хвостовик инструмента. Используются также специальные цанговые или кулачковые патроны.

Закрепление сверла и передача крутящего момента осуществляется в этом случае за счет трения цилиндрической поверхности хвостовика и соприкасающихся с ней элементов патрона. При повышенных скоростях резания, во избежание проворачивания сверла в патроне во время сверления, применяют сверла с поводком, выполненным в виде двух плоскостей (лысок). Из-за недостаточной силы зажима цилиндрический хвостовик применяется только для сверл диаметром до 20-25 мм.

Наибольшее распространение получили сверла с коническим хвостовиком, устанавливаемые в коническое отверстие шпинделя станка. Если размеры конического хвостовика меньше чем у отверстия шпинделя, используются переходные втулки. Конический хвостовик сверла заканчивается лапкой, которая предназначается только для облегчения выталкивания инструмента из шпинделя клином и не должна воспринимать усилия резания, возникающего при сверлении.

Геометрические параметры резца влияют на силы резания и износ режущих кромок лезвия.

Термины и определения элементов резцов приведены в ГОСТ 25751-83.

Геометрические параметры головки резца определяют положение его передних и задних поверхностей относительно основной опорной поверхности.

Угол наклона l главной режущей кромки может быть положительным, отрицательным или равным нулю.От утла l зависят форма стружки, направление ее схода по передней поверхности лезвия и упрочнение.Если главная режущая кромка совпадает с основной плоскостью, проходящей через вершину лезвия, l =0, если направлена вверх, угол l положительный, если вниз, угол l отрицательный.

Главный угол в плане j определяет соотношение между шириной и толщиной среза при постоянных значениях подачи и глубины резания. Вспомогательный угол в плане j 1 рекомендуется при жесткой системе принимать в пределах 10-15°,при нежесткой системе 20-30 о, при обработке деталей с врезанием 30-45 о.

Рис. 10 Рабочая часть резца

Переходную режущую кромку выполняют или по радиусу или в видефаски под углом jо= j/2 и длиной f =0,5...3,0 мм в зависимости от размероврезца,Задний угол на переходнойкромке a о = a.

Рис. 11 Геометрические параметры резца

Главный передний угол g уменьшает деформацию стружки и обрабатываемой поверхности,влияет на величину и направление сил резания, прочность режущей кромки, стойкость резца и качество обработанной поверхности.

Главный задний угол a выбирают взависимости от обрабатываемого материала.

Вспомогательный задний уголa 1 назначают одинаковым с принятым задним углом a . Для отрезных и прорезных рездов a 1 = l - 2°.

Радиус вершты лезвия влияетна работурезца также, как угол j 1 . С увеличением радиусаокругления повышаются качество обработанной поверхности и стойкость резца. Увеличение радиуса возможно толькопри жестких условиях работы во избежание вибраций.

Главная режущая кромка выполняет основную работу резания и теоретически должна быть острой. Практическиже всегда имеется некоторый радиус, называемый радиусом округления режущей кромки r (рис. 12). При работе с малой толщиной среза а радиус округления существенновлияет на процесс резания, так как изменяет передний угол.

Значение радиуса r зависит от зернистости инструментального материала и способа обработки передней и задней поверхностей:

r = 6...8 мкм для резцов из быст­рорежущих сталей, алмазов, СТМ; r = 1,5...17 мкм для резцов с пластинами из твердого сплава и r = 30...40мкм для резпов, оснащенных минерало-керамическими пластинами.

Рис. 12. Форма режушей кромки в поперечом сечен и ее влияние на передний угол


Передняя поверхность лезвия выполняется плоской иликриволинейной. Плоскую поверхность применяют для обработки хрупких и очень твердых материалов, криволинейную - для обработки вязких,мягкихи средней твердости материалов. Передняя поверхность снабжается упрочняющей ленточкой f =0,2...1,0 мм (меньшиезначения-для малых подач). Размеры фасок, канавок зависят от режимов резания и в основном от подачи. Большей подаче соответствуют большие значения f, r .

СВЕРЛА

Сверло - осевой режущий инструмент для образования отверстий в сплошном материале и увеличения диаметра имеющегося отверстия. Сверла являются одним из самых распространенных видов инструментов. В промышленности применяют сверла: спиральные, перовые, одностороннего резания, эжекторные, кольцевого сверления, а также специальные комбинированные. Сверла изготавливают из легированной стали 9ХС, быстрорежущих сталей Р6М5 и др., и оснащенные твердым сплавом ВК6, ВК6-М, ВК8, ВКЮ-М и др.

Спиральные сверла. Спиральные сверла имеют наибольшее распространение и состоят из следующих основных частей: режущей, калибрующей или направляющей, хвостовой и соединительной. Главные режущие кромки сверла (рис. 13) прямолинейны и наклонены к оси сверла под главным углом в плане j .

Рис. 13 Спиральное сверло

Рис.14 Геометрические параметры спирального сверла

Режущая и калибрирующая части сверла составляют ее рабочую часть, на которой образованы две винтовые канавки, создающие два зуба, обеспечивающие процесс резания. На рабочей части сверла (рис. 15) имеется шесть лезвий: два главных (1 - 2 и 1" - 2"), два вспомогательных (1 - 3 и 1" - 3"), расположенных на калибрующей части сверла, которая служит для направления в процессе работы и является запасом на переточку, и два на перемычке (0 - 2 и 0 - 2"). Эти лезвия расположены на двух зубьях и имеют непрерывную пространственную режущую кромку, состоящую из пяти разнонаправленных отрезков (3 - 1 , 1 - 2, 2 - 2", 2" - 1", 1" - 3").

Рис.15 Режущие кромки спирального сверла

Для уменьшения трения об образованную поверхность отверстия и уменьшения теплообразования в процессе работы сверло на всей длине направляющей части имеет занижение по спинке с оставлением у режущей кромки ленточки шириной 0,2 - 2 мм в зависимости от диаметра сверла. Ленточки обеспечивают направление сверла в процессе резания, и только в начале, на длине, равной 0,5 значения подачи, они работают в качестве вспомогательной режущей кромки. Для уменьшения трения при работе на ленточках делают утонение по направлению к хвостовику (обратная конусность 0,03 - 0,12 мм по диаметру на 100 мм длины). Размер утонения зависит от диаметра сверла.

Спиральные сверла из быстрорежущей стали с цилиндрическим хвостовиком изготавливают диаметром от 1 до 20 мм. В зависимости от длины рабочей части сверла делят на короткую (ГОСТ 4010 - 77), среднюю (ГОСТ 10902 - 77) и длинную (ГОСТ 886 - 77 и ГОСТ 12122 -77) серии. Сверла с коническим хвостовиком изготавливают диаметром от 6 до 80 мм (ГОСТ 10903 - 77), удлиненные (ГОСТ 2092 - 77) и длинные (ГОСТ 12121 - 77). Мелкоразмерные сверла диаметром от 0,1 до 1,5 мм для увеличения прочности изготавливают с утолщенным цилиндрическим хвостовиком (ГОСТ 8034 - 76).

Быстрорежущие сверла диаметром свыше 6 - 8 мм делают сварными, хвостовики у этих сверл, а также хвостовики и корпуса у сверл, оснащенных твердым сплавом, изготавливают из стали 45, 40Х, кроме того, для корпусов сверл, оснащенных твердым сплавом, применяют сталь 9ХС и быстрорежущие стали.

Режущая часть сверла. Производительность и стойкость сверла во многом зависят от значения главного угла в плане j . Подобно главному углу в плане проходного резца, угол j сверла влияет на составляющие силы резания, длину режущей кромки и элементы сечения стружки. Обычно на чертежах сверл указывают значение угла при вершине 2 j. С увеличением угла при вершине сверла уменьшается активная длина режущей кромки и увеличивается толщина срезаемого слоя, при этом увеличиваются силы, действующие на единицу длины режущей кромки, что вызывает повышенное изнашивание сверла. При увеличении угла 2j сечение срезаемого слоя остается неизменным, степень его деформации уменьшается, суммарная составляющая силы резания, определяющая крутящий момент, падает. Суммарная осевая сила резания сверла при увеличении угла 2j возрастает. Это объясняется изменением положения относительно оси сверла плоскости N - N, перпендикулярной к режущей кромке, при этом часть сил, действующих на режущую кромку сверла, взаимно уравновешивается.

Передние углы на поперечной режущей кромке при увеличении угла 2j уменьшаются, что ухудшает внедрение этой кромки в материал заготовки и приводит к возрастанию осевых сил при сверлении, при этом возрастает опасность появления продольного изгиба сверла. Увеличение угла при вершине 2j приводит к более плавному изменению передних углов вдоль главной режущей кромки, что улучшает режущие способности сверла и облегчает отвод стружки.

Опыты показывают, что при уменьшении угла 2j от 140° до 90° осевая составляющая силы резания снижается на 40 - 50%, а крутящий момент увеличивается на 25 - 30%.

Наибольшее распространение получили спиральные сверла. Спиральное сверло состоит из рабочей и присоединительной частей (рис. 1.6).

Рис. 1.6. Спиральные сверла с коническим (а) и цилиндрическим (б) хвостовиками:

1 – поперечная кромка, 2 – режущая часть, 3 – передняя поверхность, 4 – шейка, 5 – хвостовик, 6 – лапка, 7 – поводок, 8 – канавка, 9 - ленточка

Присоединительная часть – это хвостовик сверла конической или цилиндрической формы.

Рабочая часть сверла представляет собой стержень с двумя винтовыми канавками с углом наклона ω по наружному диаметру D . Образующаяся при сверлении стружка по винтовым канавкам выходит из просверливаемого отверстия. Рабочая часть сверла делится на направляющую и режущую части.

На направляющей части по винтовой линии размещены две узкие ленточки, направляющие сверло в отверстие.

Режущая часть сверла состоит из режущих кромок – линий пересечения поверхности винтовой канавки с задней поверхностью зуба. У сверла две главные режущие кромки. Кроме того, имеются две вспомогательные режущие кромки, образованные пересечением поверхности винтовой канавки с ленточкой шириной f . Угол при вершине сверла измеряется между главными режущими кромками и является основным конструктивным элементом сверла. Сверла для сверления пластмасс в большинстве случаев имеют угол при вершине 2φ=70-100º.

Наряду со спиральными сверлами для обработки пластмасс применяют перовые сверла (рис. 1.7)

Рис. 1.7. Перовое сверло

Для сверления термопластичных пластмасс используют сверла из быстрорежущих и легированных инструментальных сталей. Для сверления изделий из реактопластов рекомендуются сверла из быстрорежущей стали, а также сверла, режущая часть которых оснащена пластинками из твердых сплавов вольфрамово-кобальтовой группы.

Режимы резания

При работе сверло совершает одновременно вращательное и поступательное движения. Вращательное движение сверла определяется скоростью резания V (м/мин) по формуле

V=pDn/1000 ,

где D – диаметр сверла, мм; n – частота вращения шпинделя станка, об/мин.

Поступательное движение сверла определяет другой параметр сверления – подачу, ее задают в мм на один оборот сверла. Скорость резания влияет на количество выделяемого тепла в процессе сверления. Отвод тепла затрудняется с увеличением глубины сверления, поэтому при сверлении глубоких отверстий скорость резания следует уменьшать. Кроме того, при большой глубине сверления необходимо часто выводить сверло из отверстия, чтобы освободить его от стружки и предохранить от налипания полимера. Для лучшего отвода тепла рекомендуется применять охлаждение детали сжатым воздухом или жидкостями.

Режимы резания при зенкеровании пластмасс назначаются примерно такими же, как и при сверлении. При развертывании для улучшения качества поверхности скорость резания рекомендуется уменьшать на 30 % по сравнению со сверлением.

При сверлении, зенкеровании и развертывании машинное время определяется по формуле

где L – длина пути, проходимого инструментом в направлении подачи, мм; S м – минутная подача, мм; l – длина обрабатываемого отверстия, мм; l вр – врезание инструмента, мм; l пер – перебег инструмента, мм; n – частота вращения инструмента, об/мин; S 0 – подача на один оборот сверла, мм.

При сверлении

l вр =0,5 D ctgφ

При рассверливании, зенкеровании и развертывании

l вр =0,5 (D-d) ctgφ,

где D – диаметр сверла, d – диаметр отверстия

Резка пластмасс

Во многих технологических процессах переработки пластмасс встречается операция резки. Например, при экструзии – это нарезание листов, труб и различных профилей на изделия стандартных размеров, отрезание кромок экструдата. В технологии термоформования первая операция – раскрой листового материала. В производстве листового текстолита и стеклотекстолита, плиточного пенопласта получаются изделия с неровными краями, которые обрезаются по контуру. Кроме того, отрезные операции служат для разрезания больших листов на листы меньших размеров, вырезания фасонных частей и т.д.

Или станке, предназначенный для сверления отверстий в различных материалах. Сверла изготовляются из качественных твердых сталей, что позволяет их использовать для работы с и другими металлами, бетоном или камнем.

Виды

В зависимости от предназначения сверла делятся на категории по:
  • Металлу.
  • Дереву.
  • Камню и кирпичу.
  • Стеклу и плитке.

Они отличаются между собой по форме, а также углу заточки и режущей кромке. Большинство из них являются узкоспециализированными и не могут использоваться для других целей.

По металлу

Эти сверла подходят не только для сверления металлов, но также могут использоваться для работы с пластиком и древесиной. В зависимости от формы изготовления они бывают следующих разновидностей:

  • Спиральные.
  • Конические.
  • Корончатые.
  • Ступенчатые.
Спиральные

Спиральный тип представляет собой классическую конструкцию, которая знакома практически каждому. Инструмент состоит из трех частей – режущая кромка, рабочая поверхность и хвостовик. Режущая часть имеет острую заточку, именно она врезается в металл, образовывая отверстие. Рабочая поверхность представляет собой спираль, цель которой состоит в выведении стружки из отверстия. Хвостовая часть используется для фиксации инструмента в патроне дрели или станка.

Такой тип обычно изготавливают из быстрорежущей стали марки HSS, Р18 или Р6М5. Что касается стали Р18, то она встречается довольно редко и на данный момент производством инструментов из нее занимаются только некоторые предприятия, находящиеся на территории Белоруссии. Из нее получаются очень надежные сверла, которые отлично удерживают заточку.

Конические

Такое сверло обычно можно встретить зажатым в специализированный станок. Его рабочая часть представляет собой конус, вершина которого врезается в поверхность металла, образовывая тонкое отверстие. По мере углубления в материал происходит контакт с более широкой частью конуса, что обеспечивает расширение отверстия. Благодаря использованию данной конструкции, можно обеспечить сверление за один проход. К примеру, если использовать обычное спиральное сверло, то сначала нужно сделать отверстие тонким инструментом, а потом более толстым, постепенно доводя диаметр под требуемые параметры. Конусная форма позволяет избежать подобных неудобств, но к сожалению, она не подходит для слабых дрелей.

Корончатые

Корончатая конструкция представляет собой пустотелый цилиндр, на нижнем торце которого имеются острые зазубрины, напоминающие корону. Такой инструмент позволяет делать отверстия большого диаметра, начиная от 30 мм и более. Недостаток данной конструкции заключается в невозможности установки в патрон обычной дрели. Инструмент может быть использован для сверления листового металла толщиной до 10 мм. Обычно для изготовления корончатого инструмента используется сталь HSS. Также на рынке можно встретить сверла с твердосплавными напайками или алмазным напылением. Они позволяют работать не только с металлами и сплавами, но даже с бетоном.

Ступенчатые

Ступенчатая конструкция является одним из последних изобретений в мире режущего инструмента. Она имеет универсальное применение, поскольку позволяет делать отверстия различного диаметра. Название типа связано с тем, что он представляет собой конус со ступеньками. Такое сверло может быть использовано только для работы с листовым металлом толщиной до 2 мм. Принцип действия заключается в том, что кончик инструмента врезается в материал, и когда он пробивается, то происходит контакт с более широкой частью конуса, которая просверливает углубление еще больше. Таким образом, чтобы получить требуемый диаметр нужно углубиться до нужной ступени.

По дереву

Часто для работы с деревом применяется стандартное спиральное сверло по металлу. Оно позволяет делать отверстие диаметром от 2 до 18 мм. Тем не менее, данный тип сильно ограничивает возможности деревообработки, поэтому было разработано и внедрено несколько особых типов сверл:

  • Спиральные по дереву.
  • Перовые.
  • Винтовые.
  • Кольцевые пилы.
  • Балеринки.
  • Форстнера.
Спиральные по дереву

Спиральные по дереву очень похожи на обычное сверло по металлу. Единственное отличие заключается в форме режущей кромки. Она напоминает трезубец. Острый зуб по центру позволяет провести точную фиксацию в месте сверления. Инструментальная сталь легко врезается в древесину. Особая конструкция позволяет получать очень качественное отверстие, без вырывания волокон, как это бывает при использовании инструмента по металлу.

Перовые

Перовое имеет плоскую конструкцию, на конце которой тоже имеется трезубец, как и в предыдущем типе. Оно обеспечивает большой диаметр сверления, при этом позволяет проводить установку в обычную дрель. Данный тип режет чистые края, без разорванных волокон древесины. Нужно отметить, что в случае сверление небольшого углубления в его центре останется бороздка от основного зуба. Такое сверло работает только на малых оборотах. Его часто используют с ручным коловоротом.

Винтовые

Винтовые сверла напоминают спиральные, но имеют более совершенную рабочую часть для отвода стружки. Они довольно длинные, поэтому позволяют делать глубокие отверстия. Их часто используют для сверления бруса и бревен. Зачастую такое сверло имеет специальную ручку, что позволяет работать даже без использования дрели, станка или коловорота. Заостренная часть инструмента напоминает шуруп, она врезается в древесину, поджимая режущую кромку к волокнам. Срез получается чистым и аккуратным, даже при работе с сырым деревом.

Кольцевые пилы

Этот инструмент представляет собой пустотелый цилиндр с пильными зубьями на торце и обычным выпирающим вперед спиральным сверлом. Он позволяет делать отверстия в досках, фанере и вагонке. Его обычно применяют для получения широких отверстий, необходимых для установки светильников. Инструмент подходит не только для древесины, но и для пенополистирола, ПВХ вагонки и сотового поликарбоната. Такие пилы для дрели могут быть использованы для врезания посадочного места при установке розетки в стене, конечно при условии, что она деревянная или из мягких блоков – пенобетон, глина и пр. Выборка центральной части может быть доделана с помощью стамески.

Балеринки

Балеринка – это регулируемое сверло по дереву. Оно позволяет делать широкие отверстия в фанере, ДСП, МДФ и OSB плитах. Его конструкция представляет собой крестовину, центр которой выполнен в виде спирального сверла. На плечах крестовины крепятся острые резцы, прорезающие листовой материал. Специальный ключ позволяет менять расстояние между резцами, тем самым регулируя диаметр получаемого отверстия.

Сверло Форстнера

Инструмент имеет цилиндрический хвостовик с двумя режущими кромками. Он применяется преимущественно в мебельном производстве. С его помощью можно сделать углубление большого диаметра для установки петлей на дверцы шкафчиков. В результате его применения получается аккуратное отверстие с плоским дном.

По бетону

Сверла по бетону также подходят для работы с камнем и кирпичом. Они бывают трех видов:
  • Спиральные.
  • Винтовые.
  • Корончатые.

Все они имеют специальные напайки, которые вгрызаются в камень, бетон и кирпич. Напайки могут изготовляться из победитовых пластин или представлять собой кристаллы искусственного алмаза.

Спиральные

Спиральные устанавливаются в . Они имеют практически идентичную конструкцию со сверлами для металла, за исключением напаек. Лучше всего они работают с бетоном и кирпичом. Глубина отверстия обычно не превышает 80-100 мм.

Винтовые

Винтовые тоже имеют напайки. Они являются более длинными, чем спиральными. Их используют в тех случаях, когда требуется пробить глубокое отверстие. Винты обеспечивают эффективное отведение пыли, что снижает вероятность застревания. Тем не менее, стоит все же периодически вытягивать перфоратор, чтобы проверить – нет ли пыли.

Корончатые

По своей конструкции напоминают стандартную коронку для древесины. В центре имеется спиральное сверло, которое врезается в бетон, камень или кирпич, при этом основную работу по сверлению отверстия требуемой глубины выполняет коронка с напайками. Такие сверла тоже требуют ударного бурения, поэтому не подходят для обычной дрели.

По стеклу

Для сверления керамики и стекла используется всего два вида сверл – коронки и перовые. Коронки имеют алмазное напыления. Их диаметр от 13 до 80 мм. Алмазное напыление представляет собой приклеенные песчинки из искусственного минерала. Для использования коронки необходимо иметь качественную дрель или сверлильный станок. Важно, чтобы инструмент касался плавно, не создавая биения или неравномерного распределения давления.

Перовое сверло представляет собой классический стержень из металла, на конце которого установлено острое копье. Инструмент предлагается в небольшом диапазоне размеров 3-13 мм. Режущее перо выполняется из победита, в более редких случаях с других сплавов.

Для работы со стеклом нужно подойти ответственно к выбору сверлильных инструментов. В отличие от других материалов, ошибка с ним недопустима. Недостаточно ровная или неострая режущая часть может привести к трещине на стекле, керамике или кафеле, что будет непоправимым.