Электрооборудование

Деревянный подшипник скольжения своими руками. Способ получения подшипников скольжения с вкладышами из древесины и устройство для его осуществления

Деревянный подшипник скольжения своими руками. Способ получения подшипников скольжения с вкладышами из древесины и устройство для его осуществления

Книга название: Неметаллические подшипники скольжения
Издание: Москва, \"Машиностроение\"

Год печати: 1949
Кол-во страниц: 119
Формат: Djvu

Неметаллические подшипники известны с давних времен. Деревянные подшипники, смазываемые водой и другими смазочным\" материалами, применялись в течение многих столетий. С развитием металлургии и машиностроения требования к прочности, форме, размерам деталей машин возросли. В большинстве случаев деревянные подшипники заменялись металлическими. Однако в некоторых механизмах, например, в прокатных станах, пароходных двигателях и других машинах, в которых желательно или неизбежно было использование в качестве смазки воды, твердые породы дерева (бакаут и др.) успешно конкурировали с металлами. С начала тридцатых годов нашего столетия стали применять подшипники, изготовленные из искусственных смол в соединении с различными органическими и неорганическими материалами, т. е. из так называемых пластических масс, или пластиков, которые в определенной стадии изготовления обладают пластическими свойствами. Этими свойствами обладают также металлы. Однако подшипниковые пластики могут быть в пластичном состояний только один раз, и после отвердевания вернуть их в это состояние невозможно. Металлы же способны к многократному пластичному состоянию. Таким образом, термин \"пластмасса\", или \"пластик\", не отражает в полной мере отличительные черты этого материала. Однако он использован в настоящей книге ввиду отсутствия другого принятого термина.

Древесные пластики впервые стали применяться в качестве-подшипникового материала в Советском Союзе. Советские ниже-1 неры Матвеев и Галай еще задолго до войны неопровержимо доказали на опыте эксплуатации подшипников из этого материала-в разных машинах техническую и экономическую целесообразность их применения. Подшипники из пластмасс отличаются упругими и противоза-дирными свойствами, присущими лучшим породам твердого дерева, и подобно металлам обладают высокой прочностью, плотностью и хорошей обрабатываемостью, позволяющей получатк гладкие поверхности трения. Преимущество подшипников из пластических масс заключается в том, что они отлично работают в условиях высоких нагрузок при смазывании водой. Вода может служить смазкой и для подшипников из других материалов, если условия работы подшипника допускают образование жидкостной пленки. Однако вязкость воды настолько мала по сравнению с вязкостью смазочных масел, что в большинстве случаев при трении металла о металл жидкостная пленка при смазывании водой не образуется и происходит граничное трение. При этом работа подшипника зависит в основном от качества поверхностей трения. Применение водяной смазки для стали и бронзы или для другой пары металлов при повышенных нагрузках ведет к заеданию и разрушению поверхностей трения.

Перечисленные свойства способствовали широкому использованию пластиков для изготовления подшипников скольжения в различных областях машиностроения (прокатные станы и пр.). При определенных условиях подшипники из пластмасс служат е 6 раз дольше подшипников из твердых пород дерева (бакаут) и в 10 раз дольше бронзовых и потребляют при этом значительно меньше мощности, благодаря резкому уменьшению коэфициента трения. Успешный опыт применения неметаллических подшипников в прокатных станах, гидравлических турбинах, гидротехническом оборудовании дает основание предполагать, что они после проведения соответствующих научно-исследовательских работ найдут применение и в других областях машиностроения, например, в краностроении, дорожном, строительном, сельскохозяйственном, транспортном, текстильном, химическом, пищевом машиностроении, а также в станкостроении.

Наряду с существенными преимуществами технического порядка внедрение подшипников из пластических масс дает ряд экономических выгод и в первую очередь экономию энергии, увеличение производительности и сокращение простоев оборудования, снижение стоимости ремонта, экономию цветных металлов и минеральных смазочных материалов. Необходимо, однако, подчеркнуть, что ряд вопросов, связанных с применением неметаллических подшипников, требует дальнейшего всестороннего изучения. Теоретические исследования вопросов трения в подшипниках из oпластмасс пока еще не дали законченных, пригодных для практического применения расчетных данных. Нет еще ясного предста-вления о явлениях, происходящих на поверхности трения подшипников из пластмасс вследствие взаимодействия смазкн, протекающей через подшипник, и смазки, поглощенной пластмассой, и это создает особые трудности при анализе. Для выяснения явлений, связанных с работой неметаллических подшипников и эффективного использования преимуществ в различных областях машиностроения и приборостроения необходимо провести ряд экспериментальных исследований.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Зажигание, поддержание сварочной дуги при сварке. Обработка сварных шв...
Начало шва. Зажигание сварочной дуги. Сварка своими руками....

Дуговая сварка своими руками. Электросварка. Самоучитель. Сварной шов....
Как научиться сварочным работам самостоятельно....

Почему крошится, трескается, разрушается бетон в фундаменте, дорожке, ...
Залили летом дорожку и фундамент. После зимы видны серьезные разрушения, наблюда...

Клеим крепко, прочно, правильно. Выбираем, подбираем хороший, лучший, ...
Научимся правильно выбирать клей и клеить. Лучший клей - подходящий и правильно...

Садовая скамейка своими руками на дачном участке...
Конструкция садовой скамейки. Как сделать своими руками удобную лавочку на даче...

Покрасить снаружи дом, забор, ворота. Защита древесины. Краска наружна...
Опыт покраски наружных деревянных конструкций, таких, как забор, ворота, деревян...

Закрыть стык ванны + стены, плитки, кафеля. Клеим, наклеим, приклеим б...
Как надежно и долговечно закрыть стык ванны и стены? Если стена из панелей, плит...

Спутниковое телевидение, нтв плюс, триколор тв. Установка, подключение...
Как самому установить оборудование для спутникового телевидения...


Дата публикации: 21/08/2009

Как сообщает Государственная телекомпания «Томск» , во время реконструкции местной ГРЭС-2 (расположена в сибирском городе Томск, принадлежит ОАО «ТГК-11» ) при разборке старой паровой турбины японского производства было обнаружено, что все подшипники турбины были изготовлены из… красного дерева. Турбина мощностью 30 000 л.с. (29 МВт) была установлена еще в 1948 году и проработала до 2001 года.

Первоначально турбина стояла на одном из кораблей японского императорского флота. Однако после II Мировой Войны, когда часть японских кораблей была передана СССР, а потом пущена на слом, паровая установка с одного их таких кораблей была снята и привезена в Томск на достраивающуюся тогда ГРЭС-2. После войны для восстанавливающейся советской экономики требовалось все больше энергии, но многие машиностроительные заводы в начале мирного периода еще не могли многое что производить, так как сказывалась послевоенная разруха и необходимость перехода на выпуск гражданской продукции. Поэтому в тогдашнем СССР были вынуждены устанавливать на электростанции машины из бывших фашистских стран (Германии, Японии и их союзников) полученные в качестве трофеев и по репарационным договорам. Нередко оборудование было уже изношено, технической документации не было вообще, требовалась значительная адаптация к местным условиям. Но, несмотря ни на что, томским энергетикам удалось в 1952 году пустить в строй вторую очередь ГРЭС-2, на которой и была установлена турбина, некогда работавшая на военном корабле из далекой страны восходящего солнца. Почти полвека японская турбина прослужила томичам верой и правдой, и только вначале XXI века она была окончательно остановлена.

На фотографии: начало строительства Томской ГРЭС-2 (1943-1945 гг.)

Фото: ТГК-11

На строящейся Томской государственной районной электростанции №2 сразу после войны были вынуждены использовать трофейное оборудование. Так туда попала и турбина с подшипниками из красного дерева с японского военного корабля


В настоящее время старая турбина полностью демонтирована, а на место ее устанавливается современная российская - Т-50 мощностью 50 МВт производства концерна «Силовые машины» . На 30 сентября этого года намечен ее запуск. Срок службы новый турбины должен составить 30-40 лет.

Краткая справка


Из-за тяжелых рабочих условий часто в энергетических турбинах применяются подшипники скольжения. Подшипники скольжения из древесных материалов можно встретить в установках устаревшей конструкции. В качестве основного конструкционного материала для таких подшипников использовались твердые древесные породы (например, самшит и бакаут) и древесные пластики. В современных турбинах используются подшипники скольжения из металлических и синтетических сплавов. Находят применение и подшипники качения, и прогрессивные магнитные подшипники. Более подробно с этими типами подшипников можно ознакомиться в статье .

В зависимости от рода трения в подшипнике различают подшипники скольжения , в которых опорная поверхность оси или вала скользит по рабочей поверхности подшипника, и подшипники качения , в которых развивается трение качения благодаря установке шариков или роликов между опорными поверхностями оси или вала и подшипника.

Подшипники качения по сравнению с подшипниками скольжения обладают рядом достоинств.

  • В современном машиностроении подшипники скольжения ограничены лишь некоторыми областями, например, для быстроходных валов , в режиме работы которых долговечность подшипников качения очень мала;
  • для осей и валов, требующих точной установки;
  • для валов очень большого диаметра, для которых не изготовляют стандартных подшипников качения;
  • когда подшипники по условиям сборки должны быть разъемными (например, для коленчатого вала);
  • когда в связи с восприятием подшипником ударных и вибрационных нагрузок используется демпфирующее действие масляного слоя подшипника скольжения;
  • при работе подшипников в воде, агрессивной среде и т. п.,
  • когда подшипники качения неработоспособны;
  • для тихоходных осей и валов неответственных механизмов, когда подшипники скольжения оказываются проще по конструкции и дешевле подшипников качения
  • .

В зависимости от направления воспринимаемой нагрузки подшипники скольжения различают:

  • радиальные для восприятия радиальных, т. е. перпендикулярных осям и валам, нагрузок;
  • упорные , или подпятники , для восприятия нагрузок, расположенных вдоль осевых линий осей и валов;
  • радиально-упорные для восприятия одновременно радиальных и осевых нагрузок.

При одновременном действии на ось или вал радиальных и осевых нагрузок обычно применяют сочетание радиальных и упорных подшипников и значительно реже пользуются радиально упорными подшипниками скольжения. Основные требования к подшипникам скольжения:

  • конструкции и материалы подшипников должны обеспечивать минимальные потери на трение и износ валов, иметь достаточную прочность и жесткость, чтобы противостоять действующим на них силам и вызываемым ими деформациям и сотрясениям;
  • размеры трущихся поверхностей должны быть достаточными для восприятия действующего на них давления без выдавливания смазки и для отвода развивающейся от трения теплоты;
  • сборка подшипников, установка осей и валов и обслуживание (особенно смазка на ходу) должны быть по возможности простыми.

Для уменьшения трения в подшипниках, повышения к. п. д., снижения износа и нагрева до минимума трущиеся поверхности смазывают маслом или другим смазочным материалом. В зависимости от толщины масляного слоя подшипник работает в режиме жидкостного , полужидкостного или полусухого трения .

При жидкостном трении рабочие поверхности вала и подшипника полностью разделяет слой смазки, толщина которого больше сумм неровностей обработки поверхностей вала и подшипника. При полусухом трении между валом и подшипником преобладает сухое трение, а при полужидкостном - жидкостное трение. Различают также граничное трение , при котором сплошной слой масла настолько тонок, что он теряет свойства вязкой жидкости.


Рис. 1

Самый благоприятный режим работы подшипника скольжения - при жидкостном трении, которое обеспечивает износостойкость, сопротивление заеданию вала и высокий к. п. д. подшипника. Для создания этого трения в масляном слое должно быть гидродинамическое (создаваемое вращением вала) или гидростатическое (от насоса) избыточное давление. Для получения жидкостного трения обычно применяют подшипники с гидродинамической смазкой, сущность которой в следующем. Вал при вращении под действием внешних сил занимает в подшипнике эксцентричное положение (рис. 1, а) и увлекает масло в зазор между ним и подшипником. В образовавшемся масляном клине создается гидродинамическое давление, обеспечивающее в подшипнике жидкостное трение. Эпюра распределения гидродинамического давления в подшипнике по окружности показана на (рис. 1, а), по длине - на рис. (1, б). Так как конструкция подшипников с гидростатическим давлением сложнее конструкции подшипников с гидродинамическим давлением, то их применяют преимущественно для тяжелых тихоходных валов и других деталей и узлов машин (например, тяжёлых шаровых мельниц, больших телескопов и т. п.).


Рис. 2

Подшипник скольжения состоит из корпуса и помещенных в нем вкладышей (рис. 2, а; 3), на которые непосредственно опирается ось или вал. корпус обычно делают из чугуна, вкладыши для уменьшения трения изготовляют из материалов, которые в паре с цапфой вала имеют незначительный коэффициент трения. Замена вкладышей при износе стоит значительно дешевле, чем замена всего подшипника. В ручных приводах, где износ подшипников незначительный, применяют и безвкладышные подшипники скольжения (рис. 2, б). Подшипник скольжения изготовляют либо в отдельном корпусе (рис. 2; 3), прикрепляемом болтами к детали, на которой он устанавливается, либо в корпусе, выполненном как одно целое с деталью, например станиной машины, корпусом редуктора и т. п. Наружная форма корпуса подшипника определяется в зависимости от того, где устанавливается подшипник (рис. 2; 3).


Рис. 3

Различают неразъемные (рис. 2) и разъемные (рис. 3) подшипники скольжения. Корпус и вкладыши неразъемного подшипника цельные. Вкладыш изготовляют в виде втулки (рис. 4, а), которую запрессовывают в корпус подшипника. Корпус разъемного подшипника состоит из двух частей (рис. 3): основания 1 , воспринимающего нагрузку со стороны оси или вала, и крышки 2 , прикрепляемой к основанию корпуса болтами или шпильками. Вкладышей в разъемном подшипнике обычно два - верхний 3 и нижний 4 . Иногда применяют многовкладышевые разъемные подшипники .


Рис. 4

Конструкция неразъемных подшипников проще и дешевле разъемных, но они неудобны при монтаже осей и валов. Поэтому эти подшипники обычно применяют для концевых цапф осей и валов небольших диаметров. Разъемные подшипники удобны при монтаже осей и валов и допускают регулировку зазоров путем сближения крышки и основания, поэтому их применяют наиболее широко. Для правильной работы подшипника скольжения разъем его корпуса рекомендуется выполнять перпендикулярно направлению нагрузки, воспринимаемой подшипником. Для предупреждения боковых смещений крышки относительно основания корпуса плоскость разъема корпуса обычно делают ступенчатой (см. рис. 3) или предусматривают центрирующие штифты.

В случае большой деформации вала или невозможности осуществления точного монтажа применяют самоустанавливающиеся подшипники скольжения , вкладыши которых обычно выполняют со сферическими опорными поверхностями (рис. 4, а), а иногда с опорными поверхностями в виде узкого пояса с малой угловой жесткостью (рис. 4, б). В подшипниках скольжения быстроходных малонагруженных валов, а также в подшипниках большой несущей способности для предупреждения вибрации валов при работе в режиме жидкостного трения применяют самоустанавливающиеся сегментные вкладыши (рис. 4, в), которые благодаря образованию нескольких масляных клиньев обеспечивают устойчивую работу подшипников и высокую несущую способность. В подпятнике скольжения (рис. 6, а) кольцевая пята опирается на опорное кольцо, которое для самоустановки в случае перекоса вала сопрягается с корпусом подпятника по сферической поверхности и предохраняется от вращения штифтами. Для создания в подпятниках масляных клиньев, обеспечивающих жидкостное трение, на рабочей поверхности кольца делают радиальные канавки (рис. 5, а) и на выделенных между ними сегментах - скосы в окружном направлении (рис. 5, б). Канавки служат для растекания масла, а скосы сегментов - для попадания масла на рабочие поверхности пяты и подпятника. При постоянном вращении вала скосы делают односторонними (см. рис. 5, б), при реверсивном двусторонними. Для увеличения несущей способности и надежности работы подпятников применяют подпятники скольжения с самоустанавливающимися сегментами (рис. 5, в), в которых образование масляных клиньев происходит во время работы автоматически.


Рис. 5
Рис. 6

Корпуса подшипников обычно выполняют из чугуна СЧ15, СЧ18 и СЧ20. Вкладыши подшипников скольжения изготовляют из бронз, чугунов, пластмасс и других материалов. Широко применяют чугунные или бронзовые вкладыши с баббитовой заливкой.

Вкладыши из легких антифрикционных материалов - баббитов и свинцовых бронз - изготовляют биметаллическими; в этих вкладышах тонкий антифрикционный слой наплавляют на стальную, чугунную (см. рис 4, а, б) или бронзовую (в ответственных случаях) основу. Биметаллические вкладыши из свинцовых бронз штампуют из стальной ленты, на которую наносят бронзу. Бронзовые вкладыши из оловянных, алюминиевых, кремнистых и т. п. бронз выполняют обычно сплошными однородными (см. рис. 2; 3). Бронзовые вкладыши обладают высокими прочностью и жесткостью, хорошо работают при ударах, но сравнительно медленно прирабатываются.

Вкладыши с баббитовой заливкой хорошо прирабатываются, стойки против заедания, юное цапф при них минимальный. Эти вкладыши особенно хорошо зарекомендовали себя при больших скоростях и постоянном вращении осей и валов в одну сторону. При работе с ударами и реверсивном вращении оси или вала рекомендуют бронзовые вкладыши. При длительных перерывах в работе и малой окружной скорости оси или вала применяют вкладыши из антифрикционных чугунов, которые значительно дешевле бронзовых, или вкладыши с баббитовой заливкой.

В некоторых подшипниках скольжения применяют металлокерамические вкладыши из порошков железа или бронзы с добавлением графита и других примесей путем прессования под высоким давлением и последующего спекания при высокой температуре. Достоинство металлокерамических вкладышей - высокая пористость их материалов (объем пор составляет 15...40% объема вкладыша), благодаря чему они пропитываются маслом и могут в течение продолжительного времени работать без смазки. Пластмассовые вкладыши подшипников скольжения изготовляют из древеснослоистых пластиков (ДСП), текстолита, текстоволокнита, полиамидов (в отечественной практике применяют капрон, нейлон, смолы 68 и АК-7) и фторопластов (тефлона). Основные достоинства пластмассовых вкладышей - отсутствие заедания вала, хорошая прирабатываемость, возможность смазки водой или другой жидкостью. Наиболее распространены вкладыши из текстолита и ДСП, которые широко применяют в прокатных станах, шаровых мельницах, гидравлических и других машинах с тяжелым режимом работы. Вкладыши из текстолита и ДСП изготовляют наборными из отдельных элементов, которые устанавливают в металлических кассетах (рис. 7, а). Текстоволокнитовые, а иногда и текстолитовые вкладыши изготовляют цельнопрессованными. Нейлоновые, капроновые и тефлоновые вкладыши выполняют на металлической основе, на которую наносят тонкий слой нейлона, капрона или тефлона. Эти вкладыши (в особенности тефлоновые) в паре со стальной цапфой имеют очень низкий коэффициент трения и могут работать без смазки.


Рис. 7

В некоторых подшипниках применяют вкладыши из дерева (бакаута, самшита и других твердых пород), резины и некоторых других материалов.

Конструкция деревянных вкладышей такая же, как и вкладышей из ДСП, и они имеют те же области применения.

Резиновые вкладыши применяют главным образом в подшипниках, работающих в воде, например в подшипниках роторов гидротурбин. Достоинства резиновых вкладышей - высокая податливость, компенсирующая неточность изготовления; пониженная чувствительность к попаданию на рабочую поверхность вкладыша твердых частиц; возможность смазки водой. В резиновых вкладышах слой резины помещают внутри стальной втулки (рис. 6, б) и снабжают продольными канавками для усиления охлаждения подшипника и удаления из него абразивных частиц.

Для некоторых простейших подшипников скольжения корпуса, втулки и вкладыши нормализованы ГОСТ 11521-82, 11525-82 и 11607-82...11610-82. Ненормализованные подшипники скольжения изготовляют по ведомственным нормалям.

Главный вал лодки проекта 636 вращается не по металлическим подшипникам, а по... деревянным втулкам, изготовленным из особо прочного дерева бакаут.

Бакаут - ценная древесина деревьев рода Guaiacum. Эта древесина использовалась раньше там, где были крайне важны её прочность, вес и твёрдость. Все виды этого рода внесены в настоящее время в Приложение II CITES как потенциально находящиеся под угрозой виды. Бакаут получают главным образом из Guaiacum officinale и Guaiacum sanctum, и тот и другой - небольшие медленно растущие деревья.

В английском и других европейских языках для обозначения этой древесины часто используется словосочетание lignum vitae, что значит на латинском языке «дерево жизни», и происходит от её медицинского применения: смола дерева использовалась для лечения целого ряда болезней от кашля до артрита; стружки можно использовать для заваривания чая. Другие названия palo santo (исп. святое дерево), greenheart (англ. зелёное сердце) и железное дерево (одно из многих).

Это твёрдая, плотная и устойчивая древесина, самая тяжёлая из продаваемых на рынке, легко тонет в воде. Плотность древесины колеблется от 1,1 до 1,4 грамма на кубический сантиметр. Твёрдость бакаута по шкале Янка, которая измеряет твёрдость древесины, составляет 4500 (для сравнения: гикори - 1820, красный дуб - 1290, сосна - 1225). Ядровая древесина зелёного цвета с красными и чёрными разводами, от чего и пошло английское обиходное название greenheart. В кораблестроении, при изготовлении дорогой мебели и художественных работах по дереву термин greenheart используется для обозначения зелёной сердцевины дерева Chlorocardium rodiei.

Часовщик Джон Гаррисон использовал бакаут для самых нагруженных деталей своих часов, полностью изготовленных из дерева, так как эта древесина выделяет естественную смазку в виде невысыхающего масла.

По той же причине эту древесину широко использовали для колёсных втулок и подшипников, например, для подшипников гребных валов. Согласно данным сайта San Francisco Maritime National Park Association, подшипники корабельного винта подводной лодки USS Pampanito (SS-383), принимавшей участие во Второй мировой войне, были собраны из этой древесины. Подшипники турбин гидроэлектростанции Коновинго (Conowingo) на реке Саскуэханна также были сделаны из этой древесины.

Одна из самых высоких отдельно стоящих деревянных христианских церквей в мире построена из древесины бакаута - Собор святого Георгия в Джорджтауне, Гайана.

На подводной лодке проекта 636 "Варшавянка", главный вал вращается по деревянным направляющим из этого дерева. Естественная смазка выделяемая деревом позволяет использовать данную технологию в течении 20 лет