Бытовые электроприборы

Сравнение методов определения твердости металлов. Большая энциклопедия нефти и газа

Сравнение методов определения твердости металлов. Большая энциклопедия нефти и газа

Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:

  • износостойкость металла;
  • возможность обработки резанием, шлифованием;
  • сопротивляемость местному давлению;
  • способность резать другой материал и прочие.

На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.

Понятие твердости

Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).

Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.

После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.

В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.

Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.

Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.

  • вдавливанием;
  • царапанием;
  • резанием;
  • отскоком.

Машиностроительные предприятия на данный момент для определения твердости материалов используют методы Бринелля, Роквелла, Виккерса, а также метод микротвердости.

На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.

Единицы измерения твердости

Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.

Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.

Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:

  • сплавы железа – 30 кгс/мм2;
  • медь и никель – 10 кгс/мм2;
  • алюминий и магний – 5 кгс/мм2.

Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.

Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.

В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.

Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.

Методика отображает тип индентора и прилагаемую к нему нагрузку.

В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.

Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.

Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.

К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:

Н □ 0,195 = 2800, где

□ — форма наконечника;

2800 – численное значение твердости, Н/мм 2 .

Твердость основных металлов и сплавов

Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.

Цветные металлы

Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.

Черные металлы

Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.

Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.

HB HV HRC HRA HSD
228 240 20 60.7 36
260 275 24 62.5 40
280 295 29 65 44
320 340 34.5 67.5 49
360 380 39 70 54
415 440 44.5 73 61
450 480 47 74.5 64
480 520 50 76 68
500 540 52 77 73
535 580 54 78 78

Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D 2 -d 2),

  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм.
    Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:
    сплавы из железа — 30D 2 ;
    медь и ее сплавы — 10D 2 ;
    баббиты, свинцовые бронзы — 2,5D 2 .

Скачать ГОСТ 9012-59

Для того чтобы детали и механизмы служили длительно и надежно, материалы, из которых они изготовлены, должны соответствовать необходимым условиям работы. Именно поэтому важно контролировать допустимые значения их основных механических показателей. К механическим свойствам относятся твердость, прочность, пластичность. Твердость металлов - первичная конструкционная характеристика.

Понятие

Твердость металлов и сплавов - это свойство материала создавать сопротивление при проникновении в его поверхностные слои иного тела, которое не деформируется и не разрушается при сопутствующих нагрузках (индентора). Определяют с целью:

  • получения информации о допустимых конструкционных особенностях и о возможностях эксплуатации;
  • анализа состояния под действием времени;
  • контроля результатов температурной обработки.

От этого показателя частично зависят прочность и устойчивость поверхности к старению. Исследуют как исходный материал, так и уже готовые детали.

Варианты исследования

Показателем является величина, которая называется числом твердости. Существуют различные методы измерения твердости металлов. Наиболее точные исследования заключаются в использовании различных видов вычисления, инденторов и соответствующих твердомеров:

  1. Бринелля: суть работы аппарата - вдавливание шарика в исследуемый металл или сплав, вычисление диаметра отпечатка и последующее математическое вычисление механического параметра.
  2. Роквелла: используются шарик или алмазный конусный наконечник. Значение отображается на шкале или определяется расчётно.
  3. Виккерса: наиболее точное измерение твердости металла с применением алмазного пирамидального наконечника.

Для определения параметрических соответствий между показателями разных способов измерения для одного и того же материала существуют специальные формулы и таблицы.

Факторы, определяющие вариант измерения

В лабораторных условиях, при наличии необходимого ассортимента оборудования, выбор способа исследования осуществляется в зависимости от определенных характеристик заготовки.

  1. Ориентировочное значение механического параметра. Для конструкционных сталей и материалов с небольшой твердостью до 450-650 НВ применяют метод Бринелля; для инструментальных, легированных сталей и других сплавов - Роквелла; для твердосплавов - Виккерса.
  2. Размеры испытуемого образца. Особо маленькие и тонкие детали обследуются с помощью твердомера Виккерса.
  3. Толщина металла в месте замера, в частности, цементированного или азотированного слоя.

Все требования и соответствия задокументированы ГОСТом.

Особенности методики Бринелля

Испытания на твердость металлов и сплавов с помощью твердомера Бринелля проводятся со следующими особенностями:

  1. Индентор - шарик из легированной стали или из карбидо-вольфрамового сплава диаметром 1, 2, 2,5, 5 или 10 мм (гост 3722-81).
  2. Продолжительность статического вдавливания: для чугуна и стали - 10-15 с., для цветных сплавов - 30, также возможна длительность в а в некоторых случаях - 120 и 180 с.
  3. Граничное значение механического параметра: 450 НВ при измерении стальным шариком; 650 НВ при использовании твердосплава.
  4. Возможные нагрузки. С помощью входящих в комплект грузов корректируется фактическая сила деформации на испытуемый образец. Их минимальные допустимые значения: 153,2, 187,5, 250 Н; максимальные - 9807, 14710, 29420 Н (гост 23677-79).

С помощью формул, в зависимости от диаметра выбранного шарика и от испытуемого материала, можно вычислить соответствующее допустимое усилие вдавливания.

Пример обозначения:

400HB10/1500/20, где 400HB - твердость металла по Бринеллю; 10 - диаметр шарика, 10 мм; 1500 - статическая нагрузка, 1500 кгс; 20 - период осуществления вдавливания, 20 с.

Для установления точных цифр рационально исследовать один и тот же образец в нескольких местах, а общий результат определять путем нахождения среднего значения из полученных.

Определение твердости по методу Бринелля

Процесс исследования протекает в следующей последовательности:

  1. Проверка детали на соответствие требованиям (ГОСТ 9012-59, гост 2789).
  2. Выбор необходимого шарика, определение возможного усилия, установка грузов для его формирования, периода вдавливания.
  3. Запуск твердомера и деформация образца.
  4. Измерение диаметра углубления.
  5. Эмпирическое вычисление.

где F - нагрузка, кгс или Н; A - площадь отпечатка, мм 2 .

НВ=(0,102*F)/(π*D*h),

где D - диаметр шарика, мм; h - глубина отпечатка, мм.

Твердость металлов, измеренная этим способом, имеет эмпирическую связь с вычислением параметров прочности. Метод точен, особенно для мягких сплавов. Является основополагающим в системах определения значений этого механического свойства.

Особенности методики Роквелла

Этот способ измерения был изобретен в 20-х годах XX века, более автоматизирован, чем предыдущий. Применяется для более твердых материалов. Основные его характеристики (ГОСТ 9013-59; гост 23677-79):

  1. Наличие первичной нагрузки в 10 кгс.
  2. Период выдержки: 10-60 с.
  3. Граничные значения возможных показателей: HRA: 20-88; HRB: 20-100; HRC: 20-70.
  4. Число визуализируется на циферблате твердомера, также может рассчитываться арифметически.
  5. Шкалы и инденторы. Известно 11 различных шкал в зависимости от типа индентора и предельно-допустимой статической нагрузки. Наиболее распространённые в использовании: А, В и С.

А: алмазный конусный наконечник, угол при вершине 120˚, общая допустимая сила статического влияния - 60 кгс, HRA; исследуются тонкие изделия, в основном прокат.

С: также алмазный конус, рассчитанный на максимальное усилие 150 кгс, HRC, применим для твердых и закаленных материалов.

В: шарик размером 1,588 мм, изготовленный из закаленной стали или из твердого карбидо-вольфрамового сплава, нагрузка - 100 кгс, HRB, используется для оценки твердости отожжённых изделий.

Шарикообразный наконечник (1,588 мм) применим для шкал Роквелла B, F, G. Также существуют шкалы E, H, K, для которых используется шарик диаметром 3,175 мм (ГОСТ 9013-59).

Количество проб, проделанных с помощью твердомера Роквелла на одной площади, ограничивается размером детали. Допускается повторная проба на расстоянии 3-4 диаметра от предыдущего места деформации. Толщина испытуемого изделия также регламентируется. Она должна быть не меньше увеличенной в 10 раз глубины внедрения наконечника.

Пример обозначения:

50HRC - твердость металла по Роквеллу, измерена с помощью алмазного наконечника, ее число равно 50.

План исследования по методу Роквелла

Измерение твердости металла более упрощено, нежели для

  1. Оценка размеров и характеристик поверхности детали.
  2. Проверка исправности аппарата.
  3. Определение типа наконечника и допустимой нагрузки.
  4. Установка образца.
  5. Осуществление первичного усилия на материал, величиной в 10 кгс.
  6. Осуществление полного соответствующего усилия.
  7. Чтение полученного числа на шкале циферблата.

Также возможен математический расчет с целью точного определения механического параметра.

При условии использования алмазного конуса с нагрузкой 60 или 150 кгс:

HR=100-((H-h)/0,002;

при совершении испытания с помощью шарика под усилием 100 кгс:

HR=130-((H-h)/0,002,

где h - глубина внедрения индентора при первичном усилии 10 кгс; H - глубина внедрения индентора при полной нагрузке; 0,002 - коэффициент, регламентирующий величину перемещения наконечника при изменении числа твердости на 1 единицу.

Является простым, но недостаточно точным. В то же время он позволяет измерять показатели механического свойства для твердых металлов и сплавов.

Характеристики методики Виккерса

Определение твердости металлов по данному способу наиболее просто и точно. Работа твердомера основана на вдавливании в образец алмазного пирамидального наконечника.

Основные особенности:

  1. Индентор: алмазная пирамида с углом при вершине 136°.
  2. Предельно допустимая нагрузка: для и стали - 5-100 кгс; для медных сплавов - 2,5-50 кгс; для алюминия и сплавов на его основе - 1-100 кгс.
  3. Период выдержки статической нагрузки: от 10 до 15 с.
  4. Испытуемые материалы: сталь и с твердостью более 450-500 НВ, в том числе изделия после химико-термической обработки.

Пример обозначения:

где 700HV - число твердости по Виккерсу; 20 - нагрузка, 20 кгс; 15 - период статического усилия, 15 с.

Последовательность исследования Виккерса

Порядок действий предельно упрощен.

  1. Проверка образца и аппаратуры. Особое внимание уделяется поверхности детали.
  2. Выбор допустимого усилия.
  3. Установка испытуемого материала.
  4. Запуск твердомера в работу.
  5. Чтение результата на циферблате.

Математический расчет по этому способу выглядит следующим образом:

HV=1,8544*(F/d 2),

где F - нагрузка, кгс; d - среднее значение длин диагоналей отпечатка, мм.

Он позволяет измерять высокую твердость металлов, тонких и небольших деталей, при этом предоставляя высокую точность результата.

Способы перехода между шкалами

Определив диаметр отпечатка с помощью специального оборудования, можно с помощью таблиц определить твердость. Таблица твердости металлов - проверенный помощник в вычислении данного механического параметра. Так, если известно значение по Бринеллю, можно легко определить соответствующее число Виккерса или Роквелла.

Пример некоторых значений соответствия:

Диаметр отпечатка,

Метод исследования

Бринелля

Роквелла

Виккерса

Таблица твердости металлов составлена на основе экспериментальных данных и имеет высокую точность. Также существуют графические зависимости твердости по Бринеллю от содержания углерода в железоуглеродистом сплаве. Так, в соответствии с такими зависимостями, для стали с количеством карбона в составе равному 0,2% она составляет 130 НВ.

Требования к образцу

В соответствии с требованиями ГОСТов, испытуемые детали должны соответствовать следующим характеристикам:

  1. Заготовка должна быть ровная, твердо лежать на столе твердомера, ее края должны быть гладкими или тщательно обработаны.
  2. Поверхность должна иметь минимальную шероховатость. Должна быть отшлифована и очищена, в том числе с помощью химических составов. Одновременно, во время процессов механической обработки, важно предупредить образование наклепа и повышения температуры обрабатываемого слоя.
  3. Деталь должна соответствовать выбранному методу определения твердости по параметрическим свойствам.

Выполнение первичных требований - обязательное условие точности измерений.

Твердость металлов - важное основополагающее механическое свойство, определяющее их некоторые остальные механические и технологические особенности, результаты предыдущих процессов обработки, влияние временных факторов, возможные условия эксплуатации. Выбор методики исследования зависит от ориентировочных характеристик образца, его параметров и химического состава.

Метод первопроходец. Звание заслуживает система определения твердости материалов, разработанная Августом Бринеллем. Это инженер из Швеции. Его метод стал первым стандартизированным и широко используемым. Шкалу Бринелля мир «взял на вооружение» в 1900-ом году. Разберемся, в чем суть системы, твердость каких материалов можно узнать с ее помощью, и есть ли у метода минусы.

Твердость по Бринеллю – суть метода

Для определения твердости используют прибор, составленный из измерительного блока и пресса. Наконечник пресса – стальной шарик. Его именуют индентором. Диаметр шарика соответствует ГОСТу 9012 – 59 (ИСО 6506-81, ИСО 410-82), установленному в 1990-лм году. Разрешены 3 показателя: 2,5, 5 и 10 миллиметров.

Нужный индентор выбирают так, чтобы отпечаток от него лежал в пределах 0,2-0,7 диаметра шарика. Измерение твердости по Бринеллю производится либо стальным шариком, либо шариком из карбида вольфрама. Последний, позволяет узнать твердость материалов, превышающих показатель обычной стали.

Карбидный индентор, как правило, нужен для инструментальных сплавов. Шарик из обычной стали используют, измеряя твердость древесины, меди, нержавейки, . То есть, твердомер применяют не только к металлам.

Метод измерения твердости по Бринеллю состоит из 2-х нагрузок. Сначала, пресс опускают для пробной. Небольшим надавливанием устанавливают начальное положение индентора. После, сообщают уже солидный вес, держат определенное время, потом, измеряют диаметр следа. Звучит «стройно», но есть сложность.

По краям отпечатка образуются навалы и наплывы материала. Из-за них диаметр, глубина могут быть неточными. Твердость по методу Бринелля измеряют до упругого восстановления, то есть до возвращения материала в первоначальную форму. Это возвращение может быть неполным. Тогда, фиксируется его степень.

В схожем методе Роквелла упругого восстановления не дожидаются, да и в качестве индентора используют не только металлические шары, но и алмазные конусы. Это стоит учитывать, замеряя твердость по Бринеллю и Роквеллу . Для чистоты эксперимента можно добавить еще один метод, главное, соблюсти нюансы исследований и уметь соотнести их результаты. Об этом и поговорим.

Определение твердости по Бринеллю – о цифрах и буквах

Результаты исследований выражаются в буквенно-цифровой записи. Из букв в ней присутствуют либо HB, либо HBW. Первое обозначение актуально для стального шарика. Вторая запись указывает на то, что вдавливали сферу из карбида . К буквам добавляют 2 или 3 числа. Первое – показатель твердости. Максимально возможный по Бринеллю – 650. Такой показатель измеряется карбидным индентором. Стальной вдавливается в материалы твердостью до 450-ти единиц.

Второе число в записи – диаметр шарика-наконечника. Он не указывается лишь в том случае, если максимальный, то есть равен 10-ти миллиметрам. Третье число в обозначении – сила, с которой давили на испытуемый образец. Рассмотрим такой перевод твердости по Бринеллю : 500 HBW 5/800. Запись HBW свидетельствует о применение карбидного шарика. Его диаметр составил 5 миллиметров.

Сила давления была равна 800-от килограммов силы (кгс). 500- итоговая твердость материала. Вычисляется она по формуле отношения приложенного усилия к площади отпечатка. Интересно, что со значениями Бринелля совпадает еще одна – Виккерса. Обе начинаются со 100 единиц. Правда наивысшая твердость по Виккерсу и Бринеллю разнится.

У Виккерса значения доходят до 1 200-от. Записи результатов отличаются лишь буквами. Шкала Виккерса обозначается HV. Стоит учитывать это, выбирая товары с указанием твердости. То, что по Бринеллю тверже стали, по Виккерсу – материал весьма податливый.

Кстати, согласно большинству словарей, твердость – это свойства пластичности, упругости и сопротивления деформациям, или иным разрушениям, при вдавливании в верхний слой испытуемого образца другого, более твердого вещества. Ну, вот, уточнили о чем речь. Пора разобраться, какая твердость и для каких материалов считается приемлемой.

Твердость по Бринеллю – таблица значений

Твердость стали по Бринеллю может быть от 103-ти до 200-от единиц. Показатель зависит от . Не стоит забывать, что существует мягкая, нержавеющая и закаленная сталь. Сплав Ст0, к примеру, занимает нижнюю планку твердости. СТ2пс – марка со 116-ю HB. У СТ3пс показатель равен 131. 170 HB отличают сталь СТ5Гпс и СТ5пс. 200 единиц у марок ВСт6сп, СТ6пс и СТ6сп.

Твердость металлов по Бринеллю , в том числе и их сплавов, к коим причисляется сталь, важна при эксплуатации многих предметов. Пример – подшипники. Они подвергаются трению. Будь сплав для подшипников мягким, машина не отходит и гарантийного срока. Сопротивляемость деталей износу, зависящая от твердости, важна и при конструировании космических аппаратов, летной техники, строительных конструкций.

Твердость стали по Брюнеллю для арматуры высотных зданий, к примеру, должна быть не ниже 150-ти единиц. Если брать усредненные цифры для металлов, то черные, как правило, маркируются числом 140 HB, а твердость цветных не превышает 130-ти. Драгоценные металлы одни из самых податливых.

Так, твердость по Бринеллю – всего 50. Выше говорилось, что шкала начинается со 100. Однако, современные технологи нередко дополняют ее, доводя до единицы. Твердость некоторых цветных металлов щелочноземельной группы составляет всего 30 HB.

Если вопрос не о строительстве и конструировании машин, а о ремонте, людей больше интересуют показатели древесины. Ее твердость тоже иногда измеряют по Бринеллю . Для металлов есть ГОСТы. Массы изначально «замешивают» в соответствии с техническими требованиями. Для древесины условия иные. Твердость зависит не только от породы, но и от условий произрастания.

Липа из разных местностей может отличаться на 10-20 баллов, как и сосна, дуб, ольха. Поэтому, лучше смотреть не из чего сделаны стол, или паркет, а какая твердость указана в документах к ним.

Для паркета берется древесина, как минимум, средней твердости. Если отбросить, погрешность на условия произрастания, точно подойдут блоки из белой акации, самшита, железной березы, граба и кизила.

Твердость этих пород приближенна к 100 HB. Это на торцах. Радиальный и тангенциальный показатели неизбежно ниже процентов на 30. Древесину по Бринеллю мерят в странах Европы. Россия к ним примыкает. Продукция из США соответствует Янка. Этот тест узконаправлен, применим только к дереву.

В Америке прилагаемую к материалу силу записывают не в килограммах, а в фунтах. Диаметр металлического выражен в дюймах, составляет 0,444. В миллиметрах это около 11-ти.

Итоговый результат измерений не бывает ниже 660 единиц. Высший показатель – 4 500. Таким «хвастается» гваяковое дерево. Оно одно из самых дорогих, поскольку из-за твердости сложно обрабатывается, к тому же, редко встречается.

В общем, число 4 500, даже на товарах из Штатов, встретишь редко. А вот значения Бринелля проставлены на большинстве продукции, изготавливаемой в России, и завозимой из-за рубежа. Это , в премудростях которой стоит разобраться.

Твёрдость – один из важнейших эксплуатационных показателей деталей механизмом и машин, который во многом определяет их стойкость и долговечность. Поэтому у нас в стране испытания на твёрдость стандартизированы, и проводятся в строго определённо последовательности.

Независимо от метода значение твёрдости устанавливается по результату контактирования рабочего элемента – индентора – с предварительно подготовленной поверхностью изделия. Если такой контакт происходит в течение некоторого времени, то испытание на твёрдость называют статическим , в противном случае – динамическим .

Выбор метода определения твёрдости зависит от условий работы детали, точности полученного результата и воспроизводимости испытания при различных условиях его проведения

Твёрдость по Виккерсу: методика и оборудование

Твёрдость по Виккерсу (HV) определяется путём вдавливания алмазной пирамиды, которая имеет угол при вершине в 136 0 .

Пирамидальный индентор прибора Виккерса должен обладать строго определённым соотношением сторон и площади основания пирамиды, которые оговариваются ГОСТ 2999. В результате внедрения на поверхности исследуемого образца остаётся отпечаток в виде ромба (иногда – неправильного). По значению диагонали этого ромба (или среднего арифметического значения обеих диагоналей) устанавливают число твёрдости Виккерса , которое имеет размерность механического давления.

Выпускаемое оборудование , при помощи которого можно определить твёрдость по Виккерсу относится к машинам статического действия. Они могут быть стационарными и переносными. Линейка видов такого оборудования отечественного производства маркируется ТП (Твёрдость Пирамидальная).

Стандартными условиями для проведения испытаний служат:

  • Измерительный диапазон усилий нагружения 49….1176 Н, который в твердомерах ТП имеет 7 ступенчато изменяемых положений;
  • Время выдержки образца под давлением – не менее 5 с.
  • Принцип измерения диагоналей отпечатка.

Измерение твёрдости по Виккерсу HV выполняется в следующей последовательности.

  • Образец или деталь устанавливается на стол прибора измеряемой поверхностью вверх. После этого стол вращением рукоятки маховика поднимают вверх, до лёгкого соприкосновения с индентором.
  • Отпускают рычаг, приводя тем самым в движение нагружающий механизм. После установленной с помощью реле времени продолжительности снимается, и рабочая головка, с закреплённым в ней индентором, возвращается в исходное положение.
  • После этого можно развернуть приборный стол с образцом к имеющемуся на станине твердомера отсчётному микроскопу , и замерить диагонали отпечатка.

Предварительные установки твердомера Виккерса производят при помощи рукоятки настройки. При этом с уменьшением толщины образца нагрузку следует принимать меньшей. Твёрдость по Виккерсу иногда указывается при значении рабочей нагрузки. Например , обозначение HV 50 940 отмечает, что твёрдость по Виккерсу в 940 единиц была получена после нагружения образца усилием 50 кг.

Достоинствами метода Виккерса являются:

  1. Постоянство отношения диагоналей получаемого отпечатка при изменении рабочей нагрузки.
  2. Возможность определения твёрдости сколь угодно тонких слоёв материала изделия, поскольку в своём крайнем положении индентор имеет весьма малую площадь поверхности.
  3. Повышенная точность результата , вследствие высокой твёрдости алмазной пирамидки индентора и, следовательно, отсутствием деформации самой испытательной головки.
  4. Широкий диапазон измерений , который охватывает как сравнительно мягкие металлы — алюминий, медь, так и высокопрочные стали и твёрдые сплавы.
  5. Метод Виккерса позволяет определять твёрдость отдельных слоёв металла , например, цементированного при химико-тнермической обработке образца, или слоя с изменённым химическим составом — после поверхностного упрочнения, либо легирования.

Практический диапазон измерения твёрдости по Виккерсу – 145….1000HV. Ввиду высокой точности метода, для оценки параметра НV больших партий заготовок широко применяются автоматизированные установки Briviscope и Briro от немецкой фирмы Reicherter с гидравлическим и электромеханическим приводом, а также с автоматизацией отсчёта результатов, которые выводятся на монитор.

Твёрдость по Бринеллю: методика и оборудование

Метод определения твёрдости по Бринеллю (НВ) заключается в вдавливании стального закалённого шарика.

Условия измерения твёрдости стандартизированы ГОСТ 9012, и распространяются на сталь, чугун, цветные металлы и сплавы, при этом температура испытания должна находиться в пределах 20±10 0 С. Метод Бринелля также относится к статическим.

Определяя НВ, полагают, что твёрдость испытуемой детали будет зависеть от площади отпечатка . В некоторых приборах в комплект рабочего индентора входит также шарик из вольфрамокобальтового твёрдого сплава , в связи с чем практический диапазон измеряемой твёрдости увеличивается.

Стандартом определены следующие начальные условия для оценки твёрдости по методу Бринелля:

  • Нагрузка на поверхность должна находиться в пределах 12,25…29420 Н;
  • Размерный ряд стальных шариков – 1,0…10 мм;
  • Длительность нагружения 10…15 с.
  • Диапазон отпечатков на образце не должен выходить за пределы (0,2…0,7) D, где D – диаметр шарика.

Измерение твёрдости производится с применением отечественных твердомеров Бринелля типа ТШ (Твёрдость Шариком), а также более современными приборами типа БТБ . С целью измерения величины НВ в полевых условиях, либо непосредственно у машины/конструкции выпускаются переносные твердомеры типа ТШП . Для измерения размеров полученного отпечатка необходим также специальный отсчётный микроскоп МПБ-2 , что делает сам процесс определения твёрдости менее мобильным.

Измерение твёрдости на твердомере БТБ происходит так:

  • Изделие устанавливают на измерительный стол и фиксируют по упору.
  • На приводе набирается требуемое значение нагрузки и через шпиндель прикладывают её к образцу .
  • После выдержки под давлением рабочая головка с индентором возвращается в исходное положение, а на экране перед рабочей головкой стрелочный индикатор показывает величину диаметра отпечатка .
  • Само значение НВ устанавливается по отсчётным таблицам на станине твердомера. Для смены рабочей нагрузки предназначен комплект переустанавливаемых штырей.

Переносные твердомеры Бринелля при помощи струбцины прикрепляются к требуемому месту на детали, а нагрузка создаётся поворотом рукоятки, снабжённой упорной резьбой.

Практический диапазон измерения твёрдости НВ составляет от 8 до 450 НВ. Это соответствует основной массе марок сталей и сплавов, применяемых для производства металлоконструкций.

При превышении верхнего предела точность метода Бринелля падает, поскольку происходит деформация самого индентора. Шарики из твёрдого сплава не рекомендуется применять, если ожидаемое значение твёрдости по Бринеллю будет находиться в диапазоне 350…450 НВ.

Методом Бринелля можно оценивать и твёрдость деталей в горячем состоянии – это положительная особенность способа. К числу недостатков следует отнести невозможность определения твёрдости на кромках и краях образцов, а также у деталей с малой толщиной.

Твёрдость по Роквеллу: методика и оборудование

Число твёрдости по Роквеллу (НR) — условная величина, которая зависит от глубины вдавливания в образец стального шарика, либо алмазного конуса.

Условия проведения испытания регламентированы ГОСТ 9013, и включают в себя:

  • Предварительное нагружение изделия, в ходе которого ликвидируется влияние всех поверхностных факторов: шероховатости, температуры, скорости внедрения индентора и др.;
  • Нагружение основным усилием , при котором и выполняется отсчёт.
  • Снятие загрузки .

В отличие от предыдущих методов, твёрдость по Роквеллу принимается по одной из трёх шкал :

  • Шкалы А (обозначение твёрдости НRA алмазный конус ), которая используется для весьма твёрдых высокоуглеродистых легированных инструментальных сталей и твёрдых сплавов . Диапазон измерений 60…80 HRA;
  • Шкалы В (обозначение твёрдости НRВ , в качестве индентора используется стальной закалённый шарик ), которая используется для сталей средней твёрдости и сплавов цветных металлов . Диапазон измерений 35…100 HRВ;
  • Шкалы С (обозначение твёрдости НRС , в качестве индентора используется алмазный конус ), которая испольуется для сталей средней твёрдости . Диапазон измерений 20…90 HRС.

Кроме того, для специфических условий измерения твёрдости (например, для холоднокатаных тонколистовых сталей ) применяется группа методов СуперРоквелл (шкалы HRN и HRT) .

Как и в предыдущем случае, твердомеры Роквелла — типа ТК (Твёрдость Конусом) могут быть стационарными и переносными. Стационарные твердомеры управляются электромеханическим или гидравлическим приводом. Замеры твёрдости по Роквеллу отличаются большей сложностью, что обуславливается необходимостью задать сначала первичную, а затем — вторичную скорость перемещения индентора.

В отличие от индентора на приборе Виккерса, в твердомерах Роквелла алмазный наконечник имеет форму конуса, поэтому точность измерения размеров отпечатка здесь несколько хуже.

Твёрдость по Шору: методика и оборудование

Твёрдость по Шору (НS) устанавливается после удара по этой поверхности стальным бойком. Она является функцией величины отскока бойка.

Все предыдущие способы измерения твёрдости отличаются одним недостатком – на поверхности исследуемой детали остаётся отпечаток. Иногда это не даёт возможность вновь установить деталь в узел или конструкцию. Метод Шора позволяет определять твёрдость изделия HS без деформации его поверхности .

Установка определения твердости по Шёру: 1 — Боек во взведённом состоянии. 2 — Образец испытаний. 3 — Направляющая труба. 4 — Положение отскочившего бойка

Способ Шора относится к динамическим , и заключается в следующем. К измеряемой поверхности (она может быть вертикальной или горизонтальной) подводится портативный твердомер Шора, чаще называемый склероскопом. Если материал – мягкий , то величина отскока будет меньше, поскольку энергия удара будет поглощаться поверхностью детали. Наоборот, если деталь – твёрдая , то вся энергия перейдёт в работу упругого отскока.

Рабочим органом склероскопа Шора является стальной боёк с алмазным наконечником . Сравнивая расстояние, на которое возвратился боёк после удара. Можно установить твёрдость испытуемой детали.

Диапазон измерений твёрдости по Шору составляет 30…140 НS, при этом твёрдости закаленной высокоуглеродистой стали соответствует значение 100 НS. Склероскоп Шора не повреждает поверхность изделия, а потому может использоваться в тех случаях, когда необходимо оценить твёрдость детали, находящейся в составе какого-либо действующего узла. Этим обеспечивается предупреждающая оперативная диагностика механизма или металлоконструкции.

Метод Шора прост в применении, отличается быстротой оценки твёрдости, возможностью повторного использования прибора на той же детали. Однако имеются и ограничения:

  • Параметр НS не стандартизирован (хотя в справочниках имеются пересчётные таблицы и графики для перевода единиц твёрдости по Шору в единицы HV, HR или НB);
  • Высота отскока бойка зависит от модуля Юнга материала детали, а потому сопоставимость единиц твёрдости по Шору для разных материалов невозможна;
  • Поскольку критерием твёрдости НS является величина отскока бойка, то рассматриваемый параметр имеет лишь сравнительное значение ;
  • Точность измерений на склероскопе Шора ниже , чем на твердомерах, которые были рассмотрены ранее.

Иные методы

Кроме перечисленных методов для оценки твёрдости ограниченно применяются также способ Мооса (царапанием сапфировой иглой по поверхности образца), пластико-динамический способ Польди и ряд других. Необходимо отметить, что для определения твёрдости тонких поверхностных слоёв широко применяют метод микротвёрдости с использованием прибора ПМТ-3 . По сути, это способ Виккерса, модернизированный под малые толщины измеряемых поверхностей.

Перевод единиц твёрдости

Перевод единиц определённой разными способами, можно выполнить с помощью следующей таблицы.

HB HRA HRC HV HS
688 84,5 65 940 96
660 83 63 867 93
627 82 61 800 90
611 81 59 756 86
588 80,5 58 704 83
569 80 57 682 81
555 79,5 56 653 79,5
547 79 55 635 77,5
534 78,5 54 618 76,5
518 78 53 594 74,5
507 77 52 578 73,5
500 76 51 563 71,5
482 76 49 542 70,5
470 76 49 521 67,5
457 75 48 503 66
445 74 47 450 64,5
435 73 46 474 63,5
426 73 45 461 61,5
415 73 44 442 59,5
402 72 43 420 56,5
393 72 42 417 56,5
383 71 41 401 55
373 70,5 40 389 53,5
362 70 39 378 52,5
350 69 38 362 50
341 69 37 351 49
330 68 36 343 48,5
321 68 35 330 46,5
311 67 34 319 44
302 67 33 307 43
297 66,5 32 302 42,5
288 66 31 294 41
282 66 30 288 39,5
275 65 29 280 39,5
266 65 28 274 39
260 64 27 262 37
253 64 26 255 36,5
245 63 25 246 35,5
240 62,5 24 241 34,5
232 62 23 233 33,5
228 62 22 229 32,5
222 61 21 222 32
219 61 20 222 31,5

Промежуточные данные получаются интерполяцией.

Твердость – свойство металла оказывать сопротивление проникновению в него другого более твердого тела, минимум в 10 раз. Для определения твердости применяют: методы Бриннеля, Роквелла и Виккерса.

Метод Бриннеля : в испытуемый материал под определенной нагрузкой вдавливают стальной закаленный шарик определенного диаметра и по величине диаметра шарового отпечатка судят о тверости. Отпечаток имеет вид шарового сегмента. Твердость по Бриннелю (НВ) определяют из выражения НВ=Р/F, где Р – нагрузка, F – площадь поверхности шарового отпечатка. К недостаткам метода Б. необходимо отнести невозможность испытания металлов, имеющих твердость меньше 450 МПа или толщину больше 2 мм. При испытании с твердостью более 450 МПа возможна деформация шарика и результаты будут неточными.

Метод Роквелла : основан на том, что в испытуемый образец вдавливается алмазный конус с углом при вершине 120 о или закаленный стальной шарик диаметром 1,59 мм. Алмазный конус – для твердых, шарик – для мягких металлов. Шарик/алмазный конус вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок – предварительной (0,1 кН) и основной. Соответственно с этими нагрузками на индикаторе прибора нанесены шкалы: черные А и С и красные В. Шкала А – измерение твердости изделий с очень твердым поверхностным слоем; шкала С – для измерения твердости закаленных сталей; шкала В – незакаленные стали, цветные металлы и сплавы, имеющие твердость HRB 100. Метод Р. отличается простотой и высокой скоростью измерения, обеспечивает сохранение качественной поверхности после испытаний, позволяет испытывать металлы как низкой, так и высокой твердости, при толщине изделий до 0,8 мм. Этот метод не рекомендуется применять для сплавов с неоднородной структурой (чугуны серые, ковкие и высокопрочные).

Метод Виккреса : прибором ТП-2 (типа Виккерса) можно испытывать твердость изделий толщиной 0,15 мм и выше, а также поверхностные слои металла практически из любых материалов. Измерение методом В. заключается во вдавливании под нагрузкой в испытуемое изделие в течение определенного времени наконечника в виде правильной четырехгранной алмазной пирамиды. Определение твердости на приборе ТП-2 : получение отпечатка, оптическое измерение отпечатка, определение числа твердости. При определении твердости должны быть соблюдены следующие правила: нагрузка до необходимого значения должна возрастать плавно; поверхность испытуемого образца должна быть блестящей и не иметь посторонних включений; поверхность образца должна быть сухой и чистой; наконечник должен быть перпендикулярен к поверхности образца.