Бытовые электроприборы

С воздухом который содержит в. Воздух: чем мы дышим? Благотворное влияние отрицательных аэроионов

С воздухом который содержит в. Воздух: чем мы дышим? Благотворное влияние отрицательных аэроионов

Для начала стоит разобраться, из чего состоит воздух, которым мы дышим. Главная его составляющая для нас - это кислород (21%). Основной элемент - азот (78%). Оставшаяся доля принадлежит аргону, углекислому газу с содержанием в воздухе около 0,04% и прочим элементам и соединениям.

Нарушение состава воздуха может создать проблемы для нашего организма. Самые распространённые из них - это высокая концентрация CO, CO₂ и наличие в воздухе летучих органических веществ (VOC).

Именно из-за повышенного содержания углекислого газа нам становится плохо в людном помещении, а VOC - причина того, что наша голова начинает болеть при вдыхании запаха краски или выхлопных газов.

VOC - это те химические соединения, которые существуют в виде газов, выделенных из твёрдых и жидких веществ, и легко испаряются даже при комнатной температуре. Угарный газ, метан, пары спиртов, формальдегид, ацетон, пропан, дихлорметан - всё это широко распространено вокруг нас в виде вредных газов. Особенность многих из них заключается в том, что наш организм способен обнаружить их только по ощущениям, вызванным этими вредными веществами, а не по запаху.

Как сделать воздух чище?

VOC и повышенного содержания CO и CO₂ не избежать в большом густонаселённом городе, где ездят машины, а в подъездах домов делают ремонт. Но что, если вы вдыхаете вредный воздух дома или на работе постоянно, даже когда не чувствуете никаких запахов? Если вы испытываете усталость и недомогание, беспричинно кашляете и часто жалуетесь на самочувствие, велика вероятность, что проблема в воздухе, которым вы дышите. В таком случае нужно действовать. Вот что можно сделать:

  • Проветрить комнату . Простейший, но довольно эффективный способ избавиться от скопившегося в комнате CO₂. Особенно рекомендуется владельцам газовых плит при приготовлении пищи.
  • Купить очиститель воздуха . Эти устройства различаются по способу очистки и эффективности. Один из самых простых вариантов - мойка воздуха, работающая как увлажнитель.
  • Приобрести комнатное папоротниковое растение . Простой способ снизить содержание углекислого газа и VOC рядом с собой.
  • Сменить средства бытовой химии . Иронично, но иногда мы загрязняем воздух, пытаясь сделать квартиру чище. Те средства, что преподносятся как экологически чистые, зачастую так же вредны, как и обыкновенные. Избежать вреда помогут проверенные варианты: сода и хозяйственное мыло.
  • Поменять вытяжку и проверить вентиляцию . Системы вентиляции требуют ухода, а внутриквартирные вытяжки могут быть некачественными.
  • Сделать ремонт . Радикальный способ избавиться от токсичных красок и вредных материалов, которые вы использовали, делая прошлый ремонт.
  • Переехать или сменить место работы . Если вы живёте рядом с ТЭЦ или оживлённым шоссе, прочие способы очистки воздуха вряд ли помогут. Необходимы радикальные меры.

Главное в любой ситуации - вовремя идентифицировать опасность. С этим помогут мониторы качества воздуха - специальные устройства, реагирующие на VOC, CO и CO₂ вокруг нас. В руки Лайфхакера попало одно из таких устройств - портативный монитор Atmotube 2.0.

Что такое Atmotube 2.0?

Небольшой тубусообразный гаджет, который помещается в ладони. На корпусе с титановым покрытием находится лишь одна кнопка и светодиод. На одном торце расположено гнездо для зарядки и полукольцо для крепления, а на другом - мембрана, за которой спрятаны датчики.

В комплекте идёт зарядка USB Type-C и карабин для крепления Atmotube 2.0 на замке рюкзака или связке ключей.

Этот нехитрый девайс работает в связке со смартфоном через Bluetooth и постоянно измеряет уровень загрязнённости, температуру и влажность воздуха. Atmotube реагирует на повышенное содержание углекислого газа и наличие широкого диапазона VOC, мгновенно предупреждая владельца, если качество воздуха вокруг заметно падает.

Таким образом, о проблеме загрязнённости воздуха можно будет забыть - достаточно лишь носить гаджет с собой, заряжать его раз в три-четыре дня и при необходимости реагировать на уведомления на экране.

Как это работает?

Гаджет из коробки обычно имеет чуть разряженный аккумулятор, для начала производитель рекомендует восстановить заряд полностью. В это время можно скачать и настроить приложение для работы с Atmotube. Поддерживаются платформы iOS и Android. После установки приложение предложит произвести калибровку прибора, на этом этап подготовки заканчивается - Atmotube готов к работе.

Простейший индикатор качества воздуха установлен в самом Atmotube - это светодиод, который загорается одним из пяти цветов при нажатии кнопки. Если цвет синий или зелёный, всё в порядке, если жёлтый, оранжевый или красный - воздух загрязнён.

В приложении показывается более подробная информация: индекс загрязнённости, вычисляемый по концентрации в воздухе VOC и CO, а также их содержание в ppm. Индекс принимает значения от 1 до 100: чем воздух вреднее, тем меньше число. Когда индекс падает ниже 40, Atmotube присылает уведомление. Также в приложении можно следить за температурой и влажностью воздуха.


После включения Atmotube проверяет воздух с частотой раз в 10 секунд, а через некоторое время входит в режим энергосбережения и делает замеры реже. Такой подход себя оправдывает: Atmotube с аккумулятором на 350 мА·ч работает дольше трёх дней на одном заряде.

У Atmotube 2.0 нет своего чипа памяти, поэтому разрывать связь или уносить гаджет далеко от смартфона не рекомендуется.

Это точно работает?

С ролью монитора качества воздуха Atmotube справляется отлично. Прибор быстро реагирует на духоту или загрязнённый воздух - даже сейчас, просматривая статистику, я могу вспомнить, как провёл последние дни. По первому скриншоту я вижу, что примерно в 9:10 пошёл на 20-минутную пробежку на свежем воздухе, а потом вернулся домой и вскоре немного там «надышал» - индекс упал на несколько позиций.


События предыдущего вечера я могу восстановить по второму скриншоту: примерно в 18:40 я покинул хорошо проветриваемый офис, затем 15 минут ехал в автомобиле, а потом около двух с половиной часов сидел в кафе. В кафе с хорошей вентиляцией, но большим количеством людей, некоторые из которых курили кальян. Затем была небольшая прогулка - отметка качества воздуха вновь стала синей.

Также мы подвергли гаджет экстрим-тесту: подержали его над ёмкостью с жидкостью для розжига костра. Atmotube сразу почуял неладное, а менее чем через две минуты прислал уведомление о загрязнённости воздуха на смартфон.

В эффективности работы гаджета убедились не только мы. Сначала Atmotube поверили более двух тысяч пользователей краудфандинговой площадки Indiegogo, уже готовое изделие отметили на выставке CES 2017, а потом о нём написал ряд авторитетных изданий, среди которых CNN и TechCrunch .

Кому подойдёт Atmotube 2.0?

Монитор качества воздуха будет полезен каждому жителю большого города. Спёртый воздух в людных местах, выхлопные газы, табачный дым, химические очистители, испарения от стройматериалов, красок и растворителей - всё это окружает нас ежедневно. Полностью от вредных факторов избавиться не получится, но кое-что сделать мы всё-таки в силах. Например, поменять вытяжку, сделать ремонт, купить комнатное растение или хотя бы просто проветрить комнату. Нужно лишь понимать, когда действовать, и как раз для этого нужен специальный монитор.

Как правило, мониторы качества воздуха - стационарные устройства с внушительными габаритами, требующие подключения к сети. Такое решение подойдёт для домашнего использования, но как же быть с той половиной суток (в лучшем случае), которые мы проводим вне дома?

Atmotube 2.0 - отличное решение для тех, кто хочет следить за качеством воздуха не только дома, но и в офисе, на даче или по дороге на работу. Он достаточно компактный, чтобы носить его с собой, долго держит заряд и работает с любым современным смартфоном.

Единственный нюанс: если вас интересуют точные показатели содержания CO₂ в воздухе, то лучше приобрести детектор углекислого газа . Atmotube 2.0 реагирует на духоту, вызванную большим количеством людей, и улавливает повышение концентрации CO₂, но точных данных в ppm не даёт.

У тверждение о том, что мы дышим не задумываясь, не совсем верно. Вы замечали, как за городом хочется вдыхать полной грудью и появляется легкость в теле? Покинув вагон обратной электрички, мы невольно задерживаем дыхание – организм сопротивляется вдыхать городской смог. Растения также «неравнодушны» к составу окружающей атмосферы, а воздушный режим относится к прямодействующим экологическим факторам.

Основные газы

В атмосфере процентное содержание таких основных газов, как азот (N 2 – 78,1 %), кислород (O 2 – 21 %), углекислый газ (CO 2 – 0,03 %), аргон (Ag 2 – 0,9 %), относительно постоянно, а значение их для жизни растений неравнозначно. Газообразный азот инертен и в этом виде не является жизненно важным как для животных, так и для растений.

Необходимый кислород

В атмосфере Земли кислород имеет биогенное происхождение и образовался благодаря деятельности древних автотрофных организмов. Как и нам, он необходим растениям для дыхания, однако в атмосфере в нем нет недостатка, но недостаток его в почве может быть ограничивающим фактором распространения флоры. Воздухообмен между атмосферой и почвой происходит через поры, образованные почвенными организмами, а также корнями деревьев и кустарников.

В переувлажненной почве кислорода всегда меньше, чем необходимо растениям. Плохая аэрация верхнего почвенного слоя может быть следствием избытка осадков на фоне плохого испарения, высокого уровня грунтовых и почвенных вод. Комплекс перечисленных условий характерен для тундр, болот и бореальных хвойных лесов. В этих сообществах обитают психрофиты, оксилофиты и гигрофиты, адаптированные к недостатку O 2 , который наблюдается в бесструктурных глинистых почвах, насыщенных водой лесной подстилке и торфе.

Плохая аэрация наблюдается в травяном покрове с плотной дерниной или с ярусом зеленого мха, именно поэтому в садоводстве принято периодически скарифицировать газон, создавая воздухоносные ходы в дернине. Ледяная корка зимой тоже способствует аэробным условиям, однако в состоянии покоя растения их лучше переносят.

От недостатка кислорода в почве страдают в первую очередь корни, причем чем выше температура среды, тем больше потребность в кислороде. Так что растения тропических лесов чаще встречаются с проблемой плохой аэрации почв, решением которой можно рассматривать изменение морфологии корней: досковидные выросты на их верхней части, ходульные и воздушные придаточные корни. Дыхательные корни (пневматофоры) у болотных кипарисов (Taxodium distichum ) – классический пример адаптации к болотистым местообитаниям. Не менее зависим от кислорода процесс прорастания семян, из-за его недостатка прорастание порой задерживается на десятилетия, а затем происходит при удачном стечении обстоятельств.

Водная среда может испытывать как недостаток кислорода, так и его избыток. В текущей прозрачной воде водные растения чувствуют себя очень комфортно и в результате фотосинтеза обогащают воду кислородом настолько, что он даже выделяется в воздушную среду. Оттого нам так убаюкивающе хорошо погожим деньком у речки. В стоячей воде кислорода не хватает, поэтому гидрофиты имеют морфологические адаптации в виде воздушные полостей в стеблях, листьях и корнях (рогоз, камыш, тростник), а также разветвленные и тонкостенные побеги (элодея, рдест), напоминающие талломы водорослей.

Зафиксированное трехкратное повышение содержания метана в атмосфере связывают с грядущим потеплением климата и считают одной из причин.

Даже временное затопление может вызвать повреждения
Пнематофоры болотного кипариса
Насыщенный водяными порами воздух стимулирует разрастание эпифтных мхов

Углекислый газ для фотосинтеза

Важнейший процесс жизнедеятельности растений – фотосинтез напрямую зависит от содержания в воздухе, окружающем растения, углекислого газа, который выделяется в процессе дыхания почвенных организмов. Свою лепту в пополнение атмосферы этим газом вносят извержения вулканов и разложение карбонатных пород. Растения также выделяют углекислый газ при дыхании.

Круговорот углекислого газа в атмосфере в природных сообществах начинается с фотосинтеза, в процессе которого CO 2 связывается с образованием углеводов, а O 2 выделяется. Часть углеводов (до 30 %) расходуется самими растениями на дыхание, остальное идет на питание гетеротрофных организмов, которые тоже дышат, а после конца своей жизни разлагаются с выделением CO 2 . В разных растительных сообществах отличается динамика концентрации углекислоты. Больше всего скапливается ее в нижнем ярусе лесов, что в некоторой степени компенсирует зеленым растениям недостаток там света. Содержание углекислоты увеличивается в темное время суток, когда фотосинтез не идет, а дыхание организмов продолжается. В густых лесах различие содержания CO 2 у основания стволов и внутри крон ночью может достигать 25 %, но благодаря конвекции воздуха внутри древостоя градиент постепенно выравнивается. Сезонная ритмика развития сообществ также влияет на содержание CO 2, и это напрямую связано с периодичностью и интенсивностью фотосинтеза. В частности, весной в северных широтах потребление углекислого газа растительным покровом превышает выделение его почвой.

Анаэробные процессы происходят без кислорода, а в аэробных кислород участвует как окислитель .

Типичные местаобитания гигрофитного лизихитона американского
Растеня высокогорий используют повышенное содержание углекислого газа для
интенсивного фотосинтеза
Переувлажненные почвы вблиза горячих источников бедны кислородом

И все остальные…

Кроме вышеуказанных газов в воздухе могут присутствовать двуокись серы (SO 2), угарный газ (CO), метан (NH 3), окись азота (NO 2), а также частицы пыли и копоти, водные пары и даже ароматические и фитонцидные выделения растений. Их содержание отличается большим разнообразием и непостоянством, зависит от климата, особенностей местообитания, сезона и времени суток.

Водяные пары важны для транспирации и дыхания растений, недостаток влаги в окружающем их воздухе может вызывать закрытие устьиц и препятствовать поглощению кислорода и углекислого газа, а следовательно, тормозить процесс фотосинтеза. Особенно чувствительные к этому фактору гигрофиты вянут при незначительном иссушении воздуха, как, впрочем, и высокогорные и тундровые растения, которые трудно поддаются культивированию на продуваемых иссушающими ветрами равнинах.

Влажный воздух сильнее рассеивает свет, что также вносит коррективы в процесс фотосинтеза, особенно в многоярусных лесных сообществах. Избыточная аэрация, напротив, приводит к излишнему иссушению верхнего почвенного горизонта, что часто наблюдается на бесструктурных пылеватых почвах.

Пары двуокиси серы и сероводорода (H 2 S) присутствуют вблизи природных источников и в районах сейсмической активности Земли. В болотистых местообитаниях во время анаэробного разложения бактериями органических остатков выделяется метан, который относится к парниковым газам. Интерес к нему в последнее время пережил настоящий бум. Зафиксированное трехкратное повышение содержания его в атмосфере связывают с грядущим потеплением климата и считают одной из причин.

Влияние эфирных выделений растений – мало изученная тема, хотя доказано их влияние на микроорганизмы, насекомых, патогенные грибы и воздействие на психоэмоциональное состояние человека и животных. Фитонциды убивают болезнетворные микроорганизмы и благотворно влияют на состояние здоровья человека. Есть мнение о взаимовлиянии растений через летучие соединения, а наблюдаемые закономерности используют, в частности, в органическом садоводстве и огородничестве.

Поскольку загрязнение воздуха является сравнительно молодым экологическим фактором, растения не имеют специальных адаптаций к нему.

Повреждения листьев клена ясенелистного
Травянистые растения меньше реагируют на загрязнения
Лишайники -индикаторы чистого воздуха

Промышленные газы и задымление

Наряду с природными механизмами поглощения и выделения биологически необходимых веществ в эпоху индустриализации у растений возникают реакции на повышение концентрации в воздухе промышленных газов: двуокиси серы (SO 2), окиси азота (NO 2) , фтора и фтороводорода (F, HF), хлоридов. В районах промышленных выбросов деформируется климатическая и погодная обстановка, понижается уровень освещения и влажности воздуха. У растений появляются ожоги листьев, нарушаются физиологические и биохимические процессы. Как следствие, они отстают в росте, происходят индивидуальные нарушения развития (уродства), снижается продуктивность сообществ. Внешне это выражается в уменьшении размеров растений и их отдельных органов, появлении хлороза и некротических пятен на листьях, усыхании верхушек крон.

Прошлое лето никого не оставило равнодушным и подогрело интерес к влиянию пожаров на собственное здоровье и на состояние природы. Во время массовых пожаров повышается содержание в воздухе углекислого и угарного газа, окислов азота, метана, паров воды, озона. В процессе задымления появляются фенолы, взвешенные твердые частички копоти и гари.

Поскольку фактор загрязнения воздуха является достаточно молодым в сравнении с другими экологическими факторами, растения не имеют специальных адаптаций к нему. Устойчивость к загрязнению воздуха у них вырабатывается на основе давно существующих приспособлений к экстремальным значениям других факторов. В частности, наибольшей выносливостью в городе и возле промышленных предприятий обладают засухо- и жароустойчивые ксероморфные виды.

В связи с загрязнением воздушной среды в городах и промышленных районах отмечают два свойства растений: газочувствительность и газоустойчивость, которые могут совпадать либо отличаться у конкретного биологического вида. Первое характеризует скорость и степень проявления патологических реакций, а второе – способность сохранять жизнеспособность без снижения роста и размножения. Классическим примером одновременно чувствительной и устойчивой породы является лиственница, имеющая нежную, слабо защищенную кутикулой и подверженную токсичным газам хвою, которая имеет природное свойство ежегодно опадать, не накапливая полученные повреждения. Из хвойных лиственницы лучше всех выдерживают городские условия, среди лиственных пород – тополя, клен ясенелистный. Травянистые растения повреждаются меньше древесных пород. Повышенная чувствительность лишайников к загрязнению позволяет использовать их в качестве индикаторов чистоты воздушной среды.

Психрофиты – растения влажных и холодных почв.

Оксилофиты – растения сфагновых болот.

Каждый день мы совершаем около 20 тысяч вдохов. Достаточно на 7–8 минут остановить поступление кислорода в кровь, чтобы в коре головного мозга произошли необратимые изменения. Воздух поддерживает множество биохимических реакций в нашем организме. И от его качества во многом зависит наше здоровье.

Атмосферный воздух у поверхности Земли в норме состоит из азота (78,09%), кислорода (20,95%), углекислоты (0,03–0,04%). Остальные газы вместе занимают по объему менее 1%, к ним относятся аргон, ксенон, неон, гелий, водород, радон и другие. Однако выбросы промышленных предприятий и транспорта нарушают это соотношение компонентов. Только в Москве в воздух выбрасывается от 1 до 1,2 млн тонн вредных химических веществ в год, то есть 100–150 кг на каждого из 12 миллионов жителей Москвы. Стоит задуматься, чем мы дышим, и что может помочь нам противостоять этой «газовой атаке».

Кратчайший путь

Легкие человека имеют поверхность до 100 м2, что в 50 раз превышает площадь кожных покровов. В них воздух непосредственно контактирует с кровью, в которой растворяются почти все входящие в него вещества. Из легких, минуя детоксикационный орган – печень, они действуют на организм в 80–100 раз сильнее, чем через желудочно-кишечный тракт при проглатывании.

Воздух, которым мы дышим, загрязняют порядка 280 токсичных соединений. Это соли тяжелых металлов (Cu, Cd, Pb, Mn, Ni, Zn), оксиды азота и углерода, аммиак, сернистый газ и др. В безветренную погоду все эти вредные соединения оседают и создают у земли плотный слой – смог. Под влиянием ультрафиолетовых лучей в жаркий период вредоносные газовые смеси преобразуются в более вредные вещества – фотооксиданты. Ежедневно человек вдыхает до 20 тыс. л воздуха. И за месяц в крупном городе может набрать токсическую дозу. В результате снижается иммунитет, возникают респираторные и неврологические заболевания. Особенно страдают от этого дети.

Принимаем меры

1. Защитить организм от проникновения тяжелых металлов в клетки поможет чай из календулы, ромашки, облепихи и шиповника.

2. Для выведения токсических вещества успешно используются некоторые растения, например, кориандр (кинза). По мнению экспертов, необходимо съедать как минимум 5 г этого растения в сутки (примерно 1 ч. л.).

3. Способностью связывать и выводить тяжелые металлы также обладают чеснок, семена кунжута, женьшень и многие другие продукты растительного происхождения. Эффективен также яблочный сок, в котором много пектинов – природных адсорбентов.

Город без кислорода

Жители мегаполиса постоянно испытывают нехватку кислорода из-за промышленных выбросов и загрязнений. Так, при сжигании 1 кг угля или дров расходуется более 2 кг кислорода. Один автомобиль за 2 часа работы поглощает столько кислорода, сколько дерево выделяет за 2 года.

Концентрация кислорода в воздухе составляет зачастую всего 15–18%, тогда как норма – порядка 20%. На первый взгляд, это небольшая разница – всего-то 3–5%, но для нашего организма она довольно ощутима. Уровень кислорода в воздухе 10% и ниже смертелен для человека. К сожалению, достаточное количество кислорода в природных условиях есть лишь в городских парках (20,8%), загородных лесах (21,6%) и на берегах морей и океанов (21,9%). Ситуация усугубляется тем, что каждые 10 лет площадь легких уменьшается на 5%.

Кислород повышает умственную способность, устойчивость организма к стрессам, стимулирует согласованную работу внутренних органов, повышает иммунитет, способствует снижению веса, нормализуется сон. Ученые подсчитали, что если бы в атмосфере Земли было в 2 раза больше кислорода, то мы могли бы бежать сотни километров, не уставая.

Кислород составляет 90% массы молекулы воды. Организм же содержит 65–75% воды. Головной мозг составляет 2% от общей массы тела и потребляет 20% кислорода, поступающего в организм. Без кислорода клетки не растут и умирают.

Принимаем меры

1. Для адекватного насыщения организма кислородом необходимо ежедневно не менее одного часа гулять в лесу. В течение одного года обычное дерево вырабатывает объем кислорода, необходимый для семьи из 4 человек на протяжении такого же периода.

2. Чтобы восполнить дефицит кислорода в организме, врачи рекомендуют пить подсоленную и минеральную щелочную воду, молочнокислые напитки (обезжиренное молоко, молочную сыворотку), соки.

3. Помогают избавиться от гипоксии кислородные коктейли. По влиянию на организм небольшая порция коктейля равнозначна полноценной лесной прогулке.

4. Кислородотерапия – это методика лечения, основанная на дыхании газовой смесью с повышенной (по отношению к содержанию кислорода в воздухе) концентрацией кислорода.

Домашняя западня

По оценкам экспертов ВОЗ, городской житель проводит в помещении около 80% своего времени. Ученые обнаружили, что воздух в комнатах в 4–6 раз грязнее наружного и в 8–10 раз токсичнее. Это формальдегид и фенол из мебели, некоторых видов синтетических тканей, ковровых покрытий, вредные вещества из строительных материалов (например, карбомид из цемента может выделять аммиак), пыль, шерсть домашних животных и т. д. В то же время в городских помещениях кислорода значительно меньше, что приводит к возникновению у людей кислородной недостаточности (гипоксии).

Газовая плита также может негативно повлиять на атмосферу в доме. Воздух газифицированных зданий в сравнении с наружным воздухом содержит в 2,5 раза больше вредных окислов азота, в 50 раз больше серосодержащих веществ, фенола – на 30–40%, окислов углерода – на 50–60%.

Но главный бич помещений – углекислый газ, основным источником которого является человек. Мы выдыхаем от 18 до 25 л этого газа в час. Последние исследования зарубежных ученых показали, что углекислый газа негативно влияет на организм человека даже в низких концентрациях. В жилых помещениях углекислого газа не должно быть более 0,1%. В комнате при концентрации углекислого газа 3–4% человек задыхается, появляются головная боль, шум в ушах, замедляется пульс. Тем не менее в небольшом количестве (0,03–0,04%) углекислый газ необходим для поддержания физиологических процессов.

Принимаем меры

1. Очень важно, чтобы воздух в помещении был «легким», т. е. ионизированным. При снижении количества аэроионов кислород хуже усваивается эритроцитами крови, возможна гипоксия. В воздухе городов содержится всего 50–100 легких ионов в 1 см³, а тяжелых (незаряженных) – десятки тысяч. В горах самая высокая ионизация воздуха – 800–1000 в 1 см³ и более.

2. Согласно исследованию, проведенному космическим агентством США, некоторые домашние растения действуют как эффективные биофильтры. В борьбе с формальдегидами помогают хлорофитум, папоротник нефролепис. Ксилол и толуол, которые выделяются, например, лаками, нейтрализует фикус Бенджамина. С аммиачными соединениями может справиться азалия. Выделяют много кислорода и поглощают вредные вещества сансевьера, филодендрон, плющ, диффенбахия.

3. Не следует забывать про регулярное проветривание. Особенно это важно в спальне, где люди проводят треть своей жизни.

Опасности на дороге

Автотранспорт поставляет львиную долю загрязняющих воздух веществ: для Москвы – это порядка 93%, для Петербурга – 71%. В Москве числится почти 4 миллиона автомашин, и с каждым годом их количество растет. К 2015 году, как полагают специалисты, автопарк Москвы составит более 5 миллионов автомобилей. За месяц средний легковой автомобиль сжигает столько кислорода, сколько за год выделяет 1 га леса, при этом выбрасывает ежегодно примерно 800 кг окиси углерода, около 40 кг окислов азота и порядка 200 кг различных углеводородов.

Самую серьезную опасность для тех, кто часто пользуется автомобилями, представляет угарный газ. Он в 200 раз быстрее связывается с гемоглобином крови, чем кислород. Эксперименты, проведенные в США, показали, что из-за влияния угарного газа у людей, проводящих большое количество времени за рулем, нарушается реакция. При концентрации угарного газа 6 мг/м3 в течение 20 минут снижается цветовая и световая чувствительность глаз. Под воздействием большого количества угарного газа может произойти обморок, случиться кома и даже наступить смерть.

Принимаем меры

1. Молочные ферменты и кислоты выводят продукты распада угарного газа. При нормальной переносимости в день можно выпивать до литра молока.

2. Для нейтрализации действия угарного газа рекомендуется есть как можно больше фруктов: зеленые яблоки, грейпфруты, а также мед и грецкие орехи.

Приятное с полезным

Немецкие ученые выяснили, что сексуальное возбуждение активизирует работу сердечно-сосудистой системы и увеличивает приток крови. В результате ткани лучше насыщаются кислородом и риск инфаркта или инсульта уменьшается на 50%.

Чем дышит метро

Ученые из Karolinska Institute в Швеции пришли к выводу, что от вдыхания микроскопических частиц угля, асфальта, железа и других загрязняющих элементов, находящихся в воздухе стокгольмского метрополитена, каждый год умирает более 5 тысяч шведов. Эти частицы оказывают на ДНК человека более сильное разрушительное воздействие, нежели частицы, содержащиеся в автомобильных выхлопах и образованные в результате сжигания древесного топлива.

Небо над Москвой

По данным наблюдений Росгидромета, в 2011 году степень загрязнения атмосферного воздуха в городах Московского региона оценивалась как: очень высокая – в Москве, высокая – в Серпухове, повышенная – в Воскресенске, Клину, Коломне, Мытищах, Подольске и Электростали, низкая – в Дзержинском, Щелково и Приокско-Террасном биосферном заповеднике.

Мы уже не сомневаемся, что мир, окружающий нас, живой. Он наполнен жизненной силой, которая находится не в статике: она в движении, так как мир дышит! И благодаря движению жизненной силы существуем мы и всё, что окружает нас: моря, реки, горы, леса, весь растительный мир и многообразье животного.

Человеку, чтобы быть здоровым и сильным, также нужно, чтобы жизненная сила находилась в нём в постоянном движении. А главный двигатель жизненной силы, конечно же, дыхание.

Кажется, как всё просто: дыши себе, как получится, и будешь здоров!

Не тут-то было! Оказывается, мы давно разучились дышать, а виноваты, как ни странно, эволюция и технический прогресс.

Мы так редко бываем наедине с природой, дышим свежим, не загрязнённым воздухом. Наши лёгкие давно не работают в полную силу, так как научились защищаться от токсичных выбросов производства. И дыхание перестало быть двигателем жизненной силы. Оно больше не энергетическое, не запускает живительные силы нашего организма. Потому что мы разучились правильно дышать.

Попробуйте забыть, что уже с рождения живёте на Земле. Представьте, что впервые очутились на прекрасной неизвестной планете, прилетев из далёкой галактики. Представили?

Посмотрите, какая величественная природа! В ней нет бушующих страстей, злости, ненависти и агрессии. Даже во время стихийных катаклизмов, когда извергаются вулканы, выворачиваются с корнем деревья, мир нашей планеты спокоен. Да, он постоянно в движении, но не испытывает эмоций, которые терзают человека. Природа не знает, что такое злость и обида.

А теперь сравните с собой. Как же мы не похожи на окружающий мир!

Мы переполнены всевозможными эмоциями, внутри кипят страсти, страхи, волнения, злость. Но мы научились их скрывать от других: нельзя чтобы кто-нибудь догадался о моих страхах – я само спокойствие. Притом, что нас переполняют эмоции, энергия застыла!

Чувствуете разницу? Природа совершенно спокойна, при постоянной энергетической активности, а человек, при всех переполняемых его эмоциях, лишен движения энергии.

Вывод? В нашем организме существуют барьеры, которые мы же и создаём, и они препятствуют движению жизненной силы, мешают ей циркулировать.

Почему же это происходит? Да очень просто! Мы разучились дышать. И пожинаем многообразье болезней, так как дыхание больше не энергетическое.

Поэтому, чтобы жизненная сила постоянно была в движении и уничтожала барьеры и застои на своём пути, нужно вновь научиться дышать. А правильное дыхание вымоет весь негатив, вместе с ненужными эмоциями.

Как и все остальные процессы, происходящие в организме, необходимые для функционирования (или другими словами – для жизни), дыхание происходит автоматически. Нам не приходится приказывать себе: Вдохни! Выдохни! Точно также автоматизированы и привычки, выработанные человечеством за века, дышать неправильно, поверхностно.

Как же происходит дыхание?

Посмотрите, каким совершенным механизмом дыхания одарила нас природа! Но мы оказались на месте первоклассника, допущенного к управлению самолётом: нет необходимых знаний и даже элементарной инструкции, как этим механизмом пользоваться. А ведь над его созданием поработали лучшие инженеры Вселенной!

Всё начинается с носа, через который воздух проходит в горло, гортань трахею, постепенно очищаясь и согреваясь, и попадает в бронхи. Бронхов у нас пара – левый и правый, и соединены они бронхиолами, состоящими их огромного количества трубочек, по которым воздух, пройдя довольно длинный путь, попадает в лёгкие.

Но для дыхания не нужно старательно втягивать воздух носом! Представьте, что это было бы за ужасающее зрелище: громко сопящие насосы, втягивающие и выталкивающие воздух…

Нет, вселенские инженеры придумали простой в своей гениальности механизм, подчиняющийся законам физики. Если каким-то образом расширить лёгкие, то внутри них образуется вакуум, и в него сразу же устремится по дыхательным путям воздух.

Но как заставить лёгкие расшириться?

Они не состоят из мышечной ткани, а значит, не могут сжиматься и расширяться самостоятельно, но их может заставить расшириться грудная клетка. Но и грудная клетка не двигается по собственному желанию, её нужно «заставить» это сделать. А это под силу замечательной мышце, выполняющей функцию перегородки между брюшной и грудной полостями – диафрагме.

Способность мышцы сокращаться и растягиваться известна всем: именно ей мы обязаны умением ходить, двигаться, разговаривать, жевать… Ну перечислять все блага, которые нам дают мышцы не буду.

Работа диафрагмы оочень похожа на кузнечные меха. (Я думаю, в интернете можно найти соответствующее видео и мехов в кузнице, и у стеклодувов). Расширяясь, диафрагма расширяет грудную клетку, а она уже растягивает лёгкие. Внутри лёгких образуется вакуум, который сразу же заполняется наружным воздухом. Мы вдохнули!

Но, как всякая мышца, после расширения диафрагма начинает сокращаться, сжимая грудную клетку. Лёгкие также сжимаются, вслед за грудной клеткой, и выталкивают воздух, который перестал умещаться, наружу. Мы выдохнули!

Но человек постарался всё испортить. Для этого использовалось всё: и тесная одежда (вспомните корсеты, которыми стягивали рёбра, чтобы сделать тонкую талию), и воздух, испорченный производством, и такие эмоции как страх, злость, гнев, мешающие полноценному дыханию. Диафрагма перестала выполнять свою обязанность, недостаточно растягивается и мы не получаем нужного для полноценной жизни количества воздуха.

Если вся дыхательная система работает дружно, то вдыхаемый воздух заполняет лёгкие до самых верхних кончиков, а выдыхая – начинает вытеснять его тоже с самого верха. Получается, что воздух в лёгких постоянно движется. Но если диафрагма выключена из работы, нет того «насоса», который наполнит лёгкие до краёв, и верхушки остаются пустыми, кислород в них не поступает. Нет движения кислорода – образуется застой энергии. А застой – это то же болото. А в болоте, как известно, гниль и плесень – для человека, это различные болезни.

Кроме этого застоя, такое неполное дыхание не доставляет в лёгкие необходимого для организма количества кислорода. Значит, и все остальные органы не дополучают нужную им энергию и в них также образуются застои, которые обязательно приведут к болезням.

Вот оказывается, что может натворить неправильное, неполное дыхание со здоровьем.

Замечательные слова о дыхании найдены в древнем санскритском тексте:

Жизнь - это промежуток между одним дыханием и другим, тот, кто вполсилы дышит, тот вполсилы живёт, но тот, кто овладел искусством дыхания, получил контроль над всей деятельностью своего существа.

Вполне возможно самостоятельно определить, что именно мешает нашему дыханию быть правильным. Для этого нужно проанализировать «всего» 4 пункта.

Первый – полнота работы легких. Чем меньше объём вдыхаемого воздуха, тем меньше кислорода достаётся каждому отдельному органу.

Второй – частота дыхания. Посчитайте количество вдохов, сделанных за одну минуту. Если получится более 8-12, лёгкие не наполнятся полностью, так как это возможно только при медленном, спокойном, плавном дыхании. Обычно, дыхание учащается при нехватке воздуха и является следствием неполного дыхания. Но частота не заменяет глубину наполнения, дыхание остаётся поверхностным. А вот вред дыхательной системе наносится значительный.

Существует мнение, что человеку отпущено определенное количество вдохов, и от того, с какой частотой вы дышите – зависит, как долго вы проживете, за какой срок используете все свое дыхание.

Третий – активная работа дуэта диафрагмы и грудной клетки и спокойные расслабленные плечи и грудь, не задействованные в процессе дыхания.

Попробуйте провести маленькое обследование.

  • Если положить ладони на плечи у основания шеи и понаблюдать во время дыхания, можно почувствовать – поднимаются ли они в такт дыханию вверх и вниз.
  • Затем переместите ладони на грудную клетку в районе легких и обратите внимание, насколько заметно вздымается при вдохе у вас грудь.
  • И следующий этап - положите ладони на область живота и определите, приходит ли он в движение, выпирая при вдохе и втягиваясь при выдохе.

При естественном дыхании активно работает диафрагма, поэтому живот будет выпячиваться и втягиваться в темпе вдохов и выдохов. Плечи совершенно не реагируют на процесс дыхания, т.к. грудная клетка растягивается диафрагмой, а не тянется ключицами.

Всего-то и нужно – направить внимание на диафрагму и попросить её опуститься (расшириться). Воздух легко, без ваших усилий, автоматически начнёт заполнять всю дыхательную систему.

И, наконец, четвёртый пункт. Нужно , а не использовать его как насос. Воздух сам заполняет дыхательную систему, проходя по двум путям до самых краёв лёгких, в этом случае дыхание будет лёгким и бесшумным. И этому способствует только работа диафрагмы.

Какой же вывод нужно сделать?

Для того чтобы дыхание было полноценным, нужно взять его процесс под контроль. А вернув себе умение дышать, мы получим контроль и над своей жизненной энергией, и над своими эмоциями, и над своим здоровьем.

Оговоримся сразу, азот в воздухе занимает большую часть, однако и химический состав оставшейся доли весьма интересен и разнообразен. Если коротко, то список основных элементов выглядит следующим образом.

Однако дадим и небольшие пояснения по функциям этих химических элементов.

1. Азот

Содержание азота в воздухе – 78% по объему и 75% по массе, то есть этот элемент доминирует в атмосфере, имеет звание одного из самых распространенных на Земле, и, кроме того, содержится и за пределами зоны обитания человека – на Уране, Нептуне и в межзвездных пространствах. Итак, сколько азота в воздухе, мы уже разобрались, остался вопрос о его функции. Азот необходим для существования живых существ, он входит в состав:

  • белков;
  • аминокислот;
  • нуклеиновых кислот;
  • хлорофилла;
  • гемоглобина и др.

В среднем около 2% живой клетки составляют как раз атомы азота, что объясняет, зачем столько азота в воздухе в процентах объема и массы.
Азот также является одним из инертных газов, добываемых из атмосферного воздуха. Из него синтезируют аммиак, используют для охлаждения и в других целях.

2. Кислород

Содержание кислорода в воздухе – один из самых популярных вопросов. Сохраняя интригу, отвлечемся на один забавный факт: кислород открыли дважды – в 1771 и 1774 годах, однако из-за разницы в публикациях открытия, почести открытия элемента достались английскому химику Джозефу Пристли, который фактически выделил кислород вторым. Итак, доля кислорода в воздухе колеблется около 21% по объему и 23% по массе. Вместе с азотом эти два газа образуют 99% всего земного воздуха. Однако процент кислорода в воздухе меньше, чем азота, и при этом мы не испытываем проблем с дыханием. Дело в том, что количество кислорода в воздухе оптимально рассчитано именно для нормального дыхания, в чистом виде этот газ действует на организм подобно яду, приводит к затруднениям в работе нервной системы, сбоям дыхания и кровообращения. При этом недостаток кислорода также негативно сказывается на здоровье, вызывая кислородное голодание и все связанные с ним неприятные симптомы. Поэтому сколько кислорода в воздухе содержится, столько и нужно для здорового полноценного дыхания.

3. Аргон

Аргон в воздухе занимает третье место, он не имеет запаха, цвета и вкуса. Значимой биологической роли этого газа не выявлено, однако он обладает наркотическим эффектом и даже считается допингом. Добытый из атмосферы аргон используют в промышленности, медицине, для создания искусственной атмосферы, химического синтеза, пожаротушения, создания лазеров и пр.

4. Углекислый газ

Углекислый газ составляет атмосферу Венеры и Марса, его процент в земном воздухе куда ниже. При этом огромное количество углекислоты содержится в океане, он регулярно поставляется всеми дышащими организмами, выбрасывается за счет работы промышленности. В жизни человека углекислый газ используется в пожаротушении, пищевой промышленности как газ и как пищевая добавка Е290 – консервант и разрыхлитель. В твердом виде углекислота – один из самых известных хладагентов «сухой лед».

5. Неон

Тот самый загадочный свет дискотечных фонарей, яркие вывески и современные фары используют пятый по распространенности химический элемент, который также вдыхает человек – неон. Как и многие инертные газы, неон оказывает на человека наркотическое действие при определенном давлении, однако именно этот газ используют в подготовке водолазов и других людей, работающих при повышенном давлении. Также неоново-гелиевые смеси используются в медицине при расстройствах дыхания, сам неон используют для охлаждения, в производстве сигнальных огней и тех самых неоновых ламп. Однако, вопреки стереотипу, неоновый свет не синий, а красный. Все остальные цвета дают лампы с другими газами.

6. Метан

Метан и воздух имеют очень древнюю историю: в первичной атмосфере, еще до появления человека, метан был в куда большем количестве. Сейчас этот газ, добываемый и используемый как топливо и сырье в производстве, не так широко распространен в атмосфере, но по-прежнему выделяется из Земли. Современные исследования устанавливают роль метана в дыхании и жизнедеятельности организма человека, однако авторитетных данных на этот счет пока нет.

7. Гелий

Посмотрев, сколько гелия в воздухе, любой поймет, что этот газ не относится к числу первостепенных по важности. Действительно, сложно определить биологическое значение этого газа. Не считая забавного искажения голоса при вдыхании гелия из шарика 🙂 Однако гелий широко применяется в промышленности: в металлургии, пищевой промышленности, для наполнения воздухоплавающих судов и метеорологических зондов, в лазерах, ядерных реакторах и т.д.

8. Криптон

Речь не идет о родине Супермена 🙂 Криптон – инертный газ, который в три раза тяжелее воздуха, химически инертен, добывается из воздуха, используется в лампах накаливания, лазерах и все еще активно изучается. Из интересных свойств криптона стоит отметить, что при давлении в 3,5 атмосферы он оказывает наркотический эффект на человека, а при 6 атмосферах приобретает резкий запах.

9. Водород

Водород в воздухе занимает 0,00005% по объему и 0,00008% по массе, но при этом именно он – самый распространенный элемент во Вселенной. О его истории, производстве и применении вполне можно написать отдельную статью, поэтому сейчас ограничимся небольшим списком отраслей: химическая, топливная, пищевая промышленности, авиация, метеорология, электроэнергетика.

10. Ксенон

Последний в составе воздуха, изначально и вовсе считавшийся только примесью к криптону. Его название переводится как «чужой», а процент содержания и на Земле, и за ее пределами минимальный, что обусловило его высокую стоимость. Сейчас без ксенона не обходятся: производство мощных и импульсных источников света, диагностика и наркоз в медицине, двигатели космических аппаратов, ракетное топливо. Кроме того, при вдыхании ксенон значительно понижает голос (обратный эффект гелию), а с недавнего времени вдыхание этого газа причислено к списку допингов.