Бытовые электроприборы

Расчет необходимого тепла для здания. Все о системах отопления производственных помещений

Расчет необходимого тепла для здания. Все о системах отопления производственных помещений

Мнение эксперта

Федоров Максим Олегович

Производственные помещения значительно отличаются от жилых квартир своими размерами и объемами. В этом состоит кардинальное отличие промышленных систем вентиляции от бытовых комплексов. Варианты обогрева просторных нежилых зданий исключают использование конвекционных методов, вполне действенных для обогрева жилья.

Большие размеры производственных цехов, сложность конфигурации, наличие множества приборов, агрегатов или машин, выделяющих в пространство тепловую энергию, нарушат процесс конвекции. Он основан на естественном процессе подъема теплых слоев воздуха, циркуляция таких потоков не терпит даже малых вмешательств. Любой сквозняк, горячий воздух от электродвигателя или станка, направит потоки в другую сторону. В промышленных цехах, складских помещениях имеются большие технологические проемы, способные прекратить работу систем обогрева малой мощности и устойчивости.

Кроме того, конвекционные методы не обеспечивают равномерного нагрева воздуха, важного для производственных помещений. Большие площади требуют одинаковой температуры воздуха во всех точках помещения, иначе возникнут затруднения для работы людей и течения производственных процессов. Поэтому для производственных помещений необходимы специфические способы обогрева , способные обеспечить правильный микроклимат, соответствующий .

Промышленные системы отопления

В число наиболее предпочтительных способов обогрева промышленных помещений входят:

  • инфракрасный

Кроме того, имеются два варианта по типу охвата площади:
  • централизованная

  • зональная

Централизованные системы

Централизованные системы создаются для максимально равномерного нагрева всех участков цеха. Это бывает важно при отсутствии конкретных рабочих мест, необходимости постоянного перемещения людей по всей площади цеха.

Зональные системы

Зональные системы отопления образуют участки с комфортным микроклиматом на рабочих местах без полного охвата площади цеха. Такой вариант дает возможность сэкономить средства, не расходуя ресурсы и тепловую энергию на балластный подогрев неиспользуемых или непосещаемых людьми участков цеха. При этом, технологический процесс не должен быть нарушен, температура воздуха должна соответствовать технологическим требованиям.

Электрическое отопление

Мнение эксперта

Инженер теплоснабжения и вентиляции РСВ

Федоров Максим Олегович

Важно! Необходимо сразу же заметить, что обогрев с помощью электроэнергии как основной способ отопления практически не используется из-за его дороговизны .

Электрические тепловые пушки или калориферы используются в качестве временных или местных источников тепла. Например, для производства ремонтных работ в неотапливаемом помещении устанавливается тепловая пушка, дающая возможность ремонтной бригаде работать в комфортных условиях, позволяющих получить необходимое качество работы. Электронагреватели как временные источники тепла являются самыми востребованными, так как не имеют потребности в теплоносителе. Они нуждаются лишь в подключении к сети, после чего тут же начинают вырабатывать тепловую энергию самостоятельно. При этом, обслуживаемые площади достаточно малы.

Воздушное отопление

Мнение эксперта

Инженер теплоснабжения и вентиляции РСВ

Федоров Максим Олегович

Воздушное отопление промышленных зданий - наиболее привлекательный тип обогрева.

Он позволяет отапливать помещения больших объемов вне зависимости от их конфигурации. Распределение воздушных потоков происходит управляемым образом, температура и состав воздуха гибким образом регулируются. Принцип действия заключается в нагреве приточного воздуха при помощи газовых горелок, электрических или водяных калориферов. Горячий воздух при помощи вентилятора и системы воздуховодов транспортируется в производственные помещения и выпускается в наиболее удобных точках, обеспечивающих максимальную равномерность нагрева. Системы воздушного отопления имеют высокую ремонтопригодность, они безопасны и позволяют полностью обеспечивать микроклимат в производственных помещениях.

Инфракрасное отопление

Мнение эксперта

Инженер теплоснабжения и вентиляции РСВ

Федоров Максим Олегович

Инфракрасное отопление - один из наиболее новых , появившихся относительно недавно, методов обогрева производственных помещений. Суть его состоит в использовании инфракрасных лучей для нагревания всех поверхностей, расположенных на пути прохождения лучей.

Обычно панели располагаются под потолком, излучая по направлению сверху вниз. От этого нагревается пол, различные предметы, в какой-то степени стены.

Мнение эксперта

Инженер теплоснабжения и вентиляции РСВ

Федоров Максим Олегович

Важно! В этом состоит особенность метода - нагревается не воздух, а именно предметы , находящиеся в помещении.

Для более эффективного распределения ИК лучей на панелях оборудованы отражатели, направляющие поток лучей в нужную сторону. Методика обогрева ИК лучами эффективна и экономична, но имеет зависимость от наличия электроэнергии.

Преимущества и недостатки

Электрообогрев

Отопительные системы, используемые для обогрева частных домов или промышленных зданий, имеют свои сильные и слабые стороны. Так, достоинствами электрических методов обогрева являются:

  • отсутствие промежуточных материалов (теплоносителя) . Электроприборы сами генерируют тепловую энергию

  • высокая ремонтопригодность приборов. Все элементы могут быть оперативно заменены в случае выхода из строя без каких-либо специфических ремонтных работ

  • система с электронагревом может очень гибко и точно регулироваться . При этом, не требуется никаких сложных комплексов, управление производится при помощи стандартных блоков

Недостатком электрических отопительных систем является их дороговизна. При этом, сами приборы стоят достаточно дорого, и электроэнергия, которую они потребляют, создает значительные расходы. Это является основной причиной редкого использования электроприборов в качестве основной отопительной системы.

Инфракрасное отопление

Инфракрасные системы имеют достоинства:

  • эффективность , экономичность

  • не сжигается кислород , сохраняется комфортная для человека влажность воздуха

  • монтаж такой системы довольно прост и доступен для самостоятельного выполнения

  • системе не страшны перепады напряжения , что позволяет сохранять микроклимат в помещениях даже при подключении к неустойчивой сети электропитания

Недостатки ИК обогрева:
  • методика предназначена в большей степени для местного, точечного обогрева. Использование ее для создания ровного микроклимата в больших цехах нерационально

  • сложность расчета системы , необходимость точного выбора подходящих приборов

Воздушное отопление

Воздушное отопление считается наиболее удобным способом обогрева производственных и жилых помещений. Это выражается в следующих преимуществах :

  • способность равномерного нагрева больших цехов или помещений любого размера

  • система может быть реконструирована, ее мощность при необходимости может быть повышена без полного демонтажа

  • воздушное отопление наиболее безопасно в эксплуатации и монтаже

  • система имеет малую инерцию и быстро может менять режимы работы

  • существует много вариантов исполнения

Недостатками воздушного отопления являются:
  • зависимость от источника нагрева

  • зависимость от наличия подключения к сети электроэнергии

  • при отказе системы температура в помещении очень быстро падает

Все эти качества являются критериями выбора отопительной системы при проектировании.

Создание проекта отопительной системы

Мнение эксперта

Инженер теплоснабжения и вентиляции РСВ

Федоров Максим Олегович

Проектирование воздушного отопления не простая задача. Для ее решения необходимо выяснить ряд факторов, самостоятельное определение которых может быть затруднено. Специалисты компании РСВ могут бесплатно сделать для вас предварительный помещения на основе оборудования ГРЕЕРС.

Выбор того или иного типа отопительной системы производится путем сопоставления климатических условий региона, размеров здания, высоты потолков, особенностей предполагаемого технологического процесса, расположения рабочих мест. Кроме того, при выборе руководствуются экономичностью способа обогрева, возможностью его использования без лишних затрат.

Расчет системы производится путем определения теплопотерь и подбора соответствующего им по мощности оборудования. Для исключения возможности ошибок необходимо использовать СНиП , в которых изложены все требования к системам отопления и даны необходимые для расчетов коэффициенты.

СНиП 41-01-2008

ОТОПЛЕНИЕ, ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ

ПРИНЯТЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ с 01.01.2008 г. постановлением от 2008 г. ВЗАМЕН СНиП 41-01-2003

Монтаж системы отопления

Мнение эксперта

Инженер теплоснабжения и вентиляции РСВ

Федоров Максим Олегович

Важно! Монтажные работы производятся в строгом соответствии с проектом и требованиями СНиП.

Важным элементом системы являются воздуховоды , которые обеспечивают транспортировку газо-воздушных смесей. Они монтируются в каждом здании или помещении по индивидуальной схеме. Размер, сечение, форма воздуховодов играют важную роль при монтаже, так как для подключения вентилятора нужны переходники, соединяющие входной или выходной патрубок устройства с системой воздушных каналов. Без качественных переходников создать плотное и работоспособное соединение не получится.

В соответствии с выбранным типом системы устанавливаются , проводятся электрические кабели , делается разводка труб для циркуляции теплоносителя . Устанавливается оборудование, выполняются все нужные подключения и соединения. Все работы производятся с обязательным соблюдением требований безопасности. Запуск системы производится в минимальном режиме функционирования, с постепенным набором проектной мощности.

Полезное видео

Температура воздуха в производственных помещениях устанавливают в зависимости от характера выполняемых в этих помещения работ. В кузнечном, сварочном и медицинском участках температура воздуха должна быть 13…15оС, в остальных помещениях 15…17 оС, а в отделении ремонта топливной аппаратуры и электрооборудования температура должна составлять 17…20 оС.

Максимальный расход теплоты на отопление определяется по формуле.

Qo= qo(t в – t н)*V, (3.2)

где qo -удельный расход теплоты на отопление 1м3 при разности температур снаружи и внутри в 1оС, равный 0,5 ккал/ч.м3

t в- внутренняя температура помещения;

t н – наружная температура;

V-объем помещения

Произведем расчет по средней температуре внутри помещения, равной 17о Кубатура производственного корпуса, при средней высоте 4,5, составляет V= 4,5 * 648= 2916 м3, наружная температура – 26оС.

Qо= 0,5 (17-(-26) 2916= 62694 ккал /ч

Максимальный часовой расход теплоты на вентиляцию подсчитывается по формуле

Qв= qв (t в – t н)*V, (3.3)

где qв- расход теплоты на вентиляцию 1 м3 при разности температур 1 оС, равный 0,25 ккал/ч.м3.

Qв=0,25(17-(-26)) 2916 = 31347 ккал. ч.

Количество теплоты, отдаваемое нагревательными приборами в час будет равно сумме теплоты, расходуемых на отопление и на вентиляцию производственного помещения.

Qn= Qo+ Qв (3.4)

Qn= 62694+31347=94041 ккал/ч

Поверхность нагревательных приборов, необходимая для отдачи тепла, определяется по формуле

где Кn- коэффициент теплопередачи, прибора, равный 72ккал/м2ч.град.

t n- средняя расчетная температура теплоносителя, равная 111 оС

Fn=2

Для отопления производственного корпуса предлагается использовать радиаторы из чугуна, каждая секция такого радиатора имеет поверхность 0,25 м2. Количество секций, необходимых для отопления мастерской будет равно

n сек=

Для отопления примем батареи по 10 секций, тогда для мастерской необходимо 56 батарей.

Годовой расход условного топлива, необходимого для отопления мастерской, можно подсчитать по формуле,

где – отопительный период, равный 190 дней;

– коэффициент эффективности топлива.

Количество натурального топлива находим по формуле,

где – коэффициент перевода условного топлива в натуральное, равный 1,17

G н = 24309,9 * 1,17= 28442,6 кг

Принимаем количество угля для отопления равное 28,5 т.

Количество дров для розжига найдем по формуле:

G др = 0,05Gн (3.6)

G др= 0,05*28442,6= 1422,13кг.

Принимаем 1,5 т. дров

Осевые напряжения в подошве рельса
Максимальные осевые напряжения в подошве рельса от изгиба и вертикальной нагрузки определяется по формуле, (1.32) где W – момент сопротивления поперечного сечения рельса относительно неётральной оси для удалённого волокна подошвы, м3, /1, таблица Б1/ (для Р65(6)2000(жб) щ W = 417∙10-6м3); ...

Определение ширины колеи в кривой
Согласно исходным данным необходимо определить для заданного экипажа оптимальную и минимально допустимую ширину колеи в кривой радиуса R. Ширина колеи на кривой определяется расчетом по вписыванию экипажа в заданную кривую, исходя из следующих условий: · ширина колеи должна быть оптимальной, т.е. о...

Краткая характеристика «Радиозавод»
Радиозавод расположен в городе Красноярске по улице Декабристов. Это предприятие комплексного типа. Здесь выполняется весь комплекс технических воздействий, предусмотренный Положением о ТО и ремонте подвижного состава автомобильного транспорта. Предприятие занимает площадь около 700 м2 На этой площ...

Производственные помещения, цехи, склады, в связи с их просторными размерами и с учетом климатических условий России, зачастую нуждаются в решении такого актуального вопроса, как оптимальное отопление. Под словом «оптимальное» подразумевается подходяще для того или иного промышленного здания соотношение цена/надежность/комфорт.

Вот об этом мы и поговорим в нашей статье.

Вообще, создание схемы отопления производственных помещений – довольно сложное занятие. Обусловлено это тем, что каждое отдельное производственное помещение строится под конкретные технологические процессы, и имеет весьма большие размеры и высоту.

Плюс ко всему, оборудование, которое используется на производстве, иногда усложняет прокладку труб для вентиляции или отопления. Но, не смотря на это, отопление промышленных зданий – важная функция, обойтись без которой невозможно.

И вот почему:

  • продуманная отопительная система обеспечивает комфортные условия труда для сотрудников и прямым образом влияет на их работоспособность;
  • она защищает оборудование от переохлаждения, которое может стать причиной поломки, что в свою очередь приведет к денежным затратам на ремонт;
  • на складах также должен быть соответствующий микроклимат, чтобы производимые товары сохраняли свой первоначальный вид.

Обратите внимание!
Подобрав простую, но вместе с тем надежную отопительную систему, вы снизите расходы на ее ремонт и сервисное обслуживание.
Плюс ко всему, для контроля над ней, потребуется гораздо меньше сотрудников.

Выбор отопительной системы для производственных помещений

Для отопления производственных зданий чаще всего используются центральные отопительные системы (водяная или воздушная), однако в некоторых случаях рациональнее использовать локальные обогреватели.

Но в любом случае, выбирая систему обогрева производства нужно опираться на следующие критерии:

  1. Площадь и высота помещения;
  2. Количество нужной теплоэнергии для поддержания оптимальной температуры;
  3. Легкость отопительного оборудования в техническом обслуживании, а также его пригодность к ремонту.

А теперь давайте попробуем разобраться с положительными и отрицательными сторонами, которыми обладают упомянутые выше виды отопления производственных помещений.

Центральное водяное отопление

Источник теплового ресурса – центральная отопительная система, либо местная котельная. Состоит водяное отопление из котла, (радиаторов или конвекторов) и трубопровода. Жидкость, нагретая в котле, передается в трубы, при этом отдавая тепло отопительным приборам.

Водяное отопление производственных зданий могут быть:

  1. Однотрубное – здесь регулирование температуры воды невозможно.
  2. Двухтрубные – здесь регулирование температуры возможно и осуществляется благодаря термостатам и параллельно установленным радиаторам.

Что касается центрального элемента водяной системы (то есть котла), то он может быть:

  • газовым;
  • жидкотопливным;
  • твердотопливным;
  • электрическим;
  • комбинированным.

Выбирать нужно исходя из возможностей. Например, если есть возможность подключения к газовой магистрали – газовый котел будет неплохим вариантом. Но учтите, что цена на данный вид топлива с каждым годом возрастает. Плюс ко всему могут случаться перебои в центральной системе газоснабжения, что никак не пойдет на пользу производственному предприятию.

Требует отдельного безопасного помещения и емкости для хранения топлива. Кроме того, придется регулярно пополнять топливные запасы, а это значит позаботиться о транспортировке, разгрузке – дополнительные затраты денежных средств, рабочих сил и времени.

Твердотопливные котлы вряд ли подойдут для обогрева производственных помещений, разве что небольших по метражу. Эксплуатация и уход за твердотопливным агрегатом – довольно трудоемкий процесс (загрузка топлива, регулярная чистка топки и дымохода от золы).

Правда, в настоящее время есть автоматизированные твердотопливные модели, в которые не нужно своими руками загружать топливо, для этого разработана специальная автоматическая система забора. Также автоматизированные модели позволяют устанавливать нужную температуру.

Однако за топкой и все же ухаживать придется. В качестве топлива здесь используются пеллеты, опилки, щепа, а при ручном закладывании еще и паленья. Хоть данный вид котлов и предполагает трудоемкую эксплуатацию, он является самым недорогим.

Электрические котлы также не лучший вариант для больших промышленных предприятий, так как затраченная электроэнергия обходится в приличную «копеечку». А вот отопление производственно помещенья 70 кв метров данным способом вполне приемлемо. Однако не забывайте, что в нашей стране, периодическое отключение электричество на несколько часов – давно привычное явление.

Что касается комбинированных котлов, то их можно назвать поистине универсальными агрегатами. Если вы выбрали водяную отопительную систему и желаете в результате получить эффективный и бесперебойный обогрев производства, то присмотритесь именно к этому варианту.

Хоть комбинированный котел и стоит в разы дороже предыдущих агрегатов, зато он дарит уникальную возможность – практически не зависеть от внешних проблем (перебои в централизованной отопительной системе, газоснабжении и электроснабжении). Такие агрегаты оборудованы двумя или большим количеством горелок, для различных видов топлива.

Вмонтированные типы горелок являются основным параметром деления комбинированных котлов на подгруппы:

  • Газово-дровяной отопительный котел – можно не бояться перебоев газоснабжения и подорожания топлива;
  • Газово-дизельный – обеспечит высокую мощность обогрева и комфорт в помещении большой площади;
  • Газ-дизель-дрова – обладает расширенной функциональностью, но за нее приходится расплачиваться меньшим КПД и невысокой мощностью;
  • Газ-дизель-электричество – весьма эффективный вариант;
  • Газ-дизель-дрова-электричество – усовершенствованный агрегат. Можно сказать, обеспечивает полную независимость от возможных внешних проблем.

С котлами все понятно, теперь давайте посмотрим, подходит ли водяное отопление на производстве под те критерии выбора, которые мы обозначили изначально. Тут сразу же стоить сказать, что теплоемкость воды, по сравнению с теплоемкостью того же воздуха больше в несколько тысяч раз (при обычных показателях температур воздуха (70°C) и воды (80°C) в отопительной системе).

В таком случае, расход воды для одного и того же помещения будет в тысячи рас меньше, чем расход воздуха. А это значит, что потребуется меньше соединительных коммуникаций, что, непременно, является большим плюсом, учитывая конструкции промышленных помещений.

Обратите внимание!
Водяная система отопления позволяет контролировать температуру: так, например, можно в нерабочее время установить дежурный обогрев производства (+10°C), а в рабочее время задать более комфортную температуру.

Воздушное отопление

Данный вид – самое первое искусственное отопление помещений. Так что воздушные отопительные системы подтверждают свою эффективность уже довольно долгое время и, нужно заметить, пользуются постоянным спросом.

Все это благодаря следующим положительным сторонам:

  • Воздушный обогрев предполагает отсутствие радиаторов и труб, вместо которых устанавливаются воздуховоды.
  • Воздушный обогрев показывает более высокий уровень КПД по сравнению с той же водной отопительной системой.
  • Воздух в данном случае нагревается равномерно, по всему объему и высоте помещения.
  • Воздушную отопительную систему можно совмещать с системой приточной вентиляции и кондиционирования, что позволяет получать чистый воздух взамен нагретого.
  • Нельзя не упомянуть и про регулярную смену и очистку воздуха, что благотворно сказывается на самочувствии и работоспособности сотрудников.

С целью экономии финансовых средств, лучше выбрать комбинированное воздушное производственное отопление, которое состоит из естественного и механического побуждения воздуха. Что это значит?

Под словом «естественное» подразумевается забор уже теплого воздуха из окружающей среды (теплый воздух имеется повсюду, даже когда на улице -20°C). Механическое побуждение – это когда воздуховод забирает из окружающей среды холодный воздух, нагревает его и подает в помещение.

Для обогрева большой площади воздушные системы отопления производственных помещений, пожалуй, являются наиболее рациональным вариантом. А в некоторых случаях, например, на химических предприятиях, воздушное отопление – это единственный разрешенный вид обогрева.

Инфракрасное отопление

Как отопить производственное помещение, не прибегая к традиционным способам? При помощи современных инфракрасных обогревателей. Они работают по следующему принципу: излучатели вырабатывают лучистую энергию над обогреваемой зоной и передают тепло объектам, от которых в свою очередь нагревается воздух.

Информация! Функциональность инфракрасных обогревателей можно сравнить с Солнцем, которое также с помощью инфракрасных волн нагревает земную поверхность, а уже в результате теплообмена от поверхности нагревается воздух.

Такой принцип работы исключает скопление нагретого воздуха под потолком и, как следствие, большие перепады температуры, что весьма привлекательно для отопления промышленных предприятий, так как большинство из них имеют высокие потолки.

ИК-обогреватели разделяются на следующие виды по месту установки:

  • потолочные;
  • напольные;
  • настенные;
  • переносные напольные.

По типу излучаемых волн:

  • коротковолновые;
  • средневолновые или светлые (их рабочая температура составляет 800°С, поэтому во время работы они излучают мягкий свет);
  • длинноволновые или темные (они не излучают свет даже при своей рабочей температуре 300-400°С).

По типу потребляемой энергии:

  • электрические;
  • газовые;
  • дизельные.

Газовые и дизельные инфракрасные системы более выгодны и их КПД составляет 85-92%. Однако они сжигают кислород и изменяют влажность в воздухе.

По типу нагревательного элемента:

  • Галогенные – единственный недостаток заключается в том, что при падении или сильного удара вакуумная трубка может разбиться;
  • Карбоновые – основной нагревательный элемент выполнен из карбонового волокна и помещен в стеклянную трубку. Самый большой плюс по сравнению с остальными ИК-устройствами – это меньшее потребление энергии (примерно в 2,5 раза). При падении или сильном ударе возможна поломка кварцевой трубки.
  • Теновые ;
  • Керамические – нагревательный элемент выполнен из керамических плиток, собранных в один рефлектор.
    Принцип работы заключается в беспламенном сгорании газо-воздушной смеси внутри керамической плитки, в результате чего она нагревается и передает тепло окружающим поверхностям, предметам, людям.

ИК-обогреватели чаще всего применяются для отопления:

  • промышленных помещений;
  • торговых и спортивных сооружений;
  • складов;
  • цехов;
  • заводов;
  • теплиц, оранжерей;
  • животноводческих ферм;
  • частных и многоквартирных домов.

Плюсы инфракрасного отопления:

  1. В первую очередь, нужно заметить, что ИК-обогреватели – единственный вид приборов, позволяющих осуществлять зональный или точечный обогрев. Таким образом, в разных частях производственного помещения можно поддерживать различный температурный режим. Зональный обогрев можно использовать для нагрева рабочих мест, деталей на конвейере, двигателей в автомобиле, молодняка на животноводческих фермах и т.п.
  2. Как уже говорилось выше, ИК-обогреватели нагревают поверхности, предметы и людей, но не затрагивают сам воздух. Получается, что циркуляция воздушных масс отсутствует, а значит, нет потери тепла и сквозняков и, как следствие, меньше простудных заболеваний и аллергических реакций.
  3. Малая инерционность инфракрасных обогревателей позволяет ощущать эффект их действия сразу же после запуска, без предварительного нагрева помещения.
  4. Инфракрасное отопление очень экономично, что обусловлено высоким КПД и низким потреблением электроэнергии (до 45% меньше энергии, чем при традиционных способах). Наверное, не нужно объяснять, что это существенно снижает финансовые затраты предприятия и быстро окупает все вложенные в инфракрасное отопление средства.
  5. ИК-обогреватели долговечны, имеют малый вес, занимают мало места, их легко монтировать (к каждому изделию прилагается подробная инструкция по установке) и они практически не требуют технического обслуживания во время эксплуатации.
  6. Инфракрасные обогреватели – это единственный вид отопительных приборов, при помощи которых можно осуществлять эффективный местный обогрев (то есть, не прибегая к централизованным системам отопления).

В заключение

Напоследок, хотелось бы предложить ознакомиться с фото-таблицей, где указана удельная отопительная характеристика производственных зданий.

Мы рассмотрели основные виды отопления производственных помещений. Какой будет самым оптимальным в вашем случае – решать только вам. А мы надеемся, что данная статья стала полезной для вас. Дополнительную информацию по этой теме вы найдете в специально подобранном видео материале.

По совокупности критериев удобства и экономичности, наверное, никакая другая система не сможет сравниться с , работающим на природном газе. Это и обуславливает широчайшую популярность подобной схемы – при любой возможности хозяева загородных домов выбирают именно ее. А в последнее время и владельцы городских квартир все чаще стремятся добиться полной автономности в этом вопросе, устанавливая газовые котлы. Да, предстоят солидные первоначальные затраты и организационные хлопоты, но взамен хозяева жилья получают возможность создавать в своих владениях требуемый уровень комфорта, причем, с минимальными эксплуатационными расходами.

Однако, рачительному хозяину мало словесных заверений в экономичности газового отопительного оборудования – хочется узнать все же, к какому расходу энергоносителей стоит быть готовым, чтобы, ориентируясь на местные тарифы, выразить затраты в денежном эквиваленте. Этому и посвящена настоящая публикация, которую вначале планировалось назвать «расход газа на отопление дома – формулы и примеры расчетов помещения в 100 м²». Но все же автор посчитал это не совсем справедливым. Во-первых, почему только именно 100 квадратных метров. А во-вторых, расход будет зависеть не только от площади, и даже можно сказать, что не столько от нее, как от целого ряда факторов, предопределяемых спецификой каждого конкретного дома.

Поэтому речь, скорее, пойдет о методике расчета, которая должна подойти для любого жилого дома или квартиры. Вычисления выглядят довольно громоздкими, но не переживайте – мы сделали все возможное, чтобы их легко смог провести любой владелец жилья, даже никогда ранее этим не занимавшийся.

Общие принципы проведения расчетов мощности отопления и потребления энергоносителей

А для чего вообще проводятся подобные расчеты?

Применение газа в качестве энергоносителя для функционирования системы отопления – выигрышно со всех сторон. Прежде всего, привлекают вполне доступные тарифы на «голубое топливо» – они не идут ни в какое сравнение с, казалось бы, более удобным и безопасным электрическом. По стоимости конкуренцию могут составить лишь доступные виды твёрдого топлива, например, если не наблюдается особых проблем с заготовкой или приобретением дров. Но по эксплуатационным издержкам – необходимости регулярного подвоза, организации правильного хранения и постоянного контроля за загрузкой котла, твердотопливное отопительное оборудование полностью проигрывает газовому, подключённому к сетевой подаче.

Одним словом, если есть возможность выбрать именно этот способ обогрева жилья, то в целесообразности установки вряд ли стоит сомневаться.

Понятно, что при выборе котла одним из ключевых критериев всегда является его тепловая мощность, то есть способность выработать определенное количество тепловой энергии. Если говорить проще, то приобретаемое оборудование по своим заложенным техническим параметрам должно обеспечить поддержание комфортных условий проживания в любых, даже самых неблагоприятно складывающихся условиях. Этот показатель чаще всего указывается в киловаттах, и, безусловно, отражается на стоимости котла, его габаритах, потреблении газа. А значит, задача при выборе такова, чтобы приобрести модель, которая в полной мере отвечала потребностям, но, в то же время, не обладала неоправданно завышенными характеристиками – это и невыгодно хозяевам, и не слишком полезно для самого оборудования.

Важно правильно понимать еще один момент. Это то, что указанная паспортная мощность газового котла всегда показывает его максимальный энергетический потенциал. При правильном подходе она должна, безусловно, несколько превышать расчетные данные необходимого поступления тепла для конкретного дома. Тем самым и закладывается тот самый эксплуатационный резерв, который, возможно, когда-нибудь понадобится при самых неблагоприятных условиях, например, при экстремальных, несвойственных району проживании холодах. Например, если расчеты показывает, что для загородного дома потребность в тепловой энергии составляет, допустим, 9,2 кВт, то разумнее будет остановить свой выбор на модели с тепловой мощностью 11,6 кВт.

Будет ли эта мощность полностью востребована? – вполне возможно, что и нет. Но и запас ее не выглядит чрезмерным.

Для чего это все так подробно разъясняется? А только лишь для того, чтобы у читателя наступила ясность с одним важным моментом. Будет совершенно неправильным рассчитывать потребление газа конкретной системой отопления, отталкиваясь исключительно от паспортных характеристик оборудования. Да, как правило, в технической документации, сопровождающей отопительный агрегат, указывается расход энергоносителя в единицу времени (м³/час), но это опять же в большей мере теоретическая величина. И если пытаться получить искомый прогноз расхода простым умножением этого паспортного параметра на количество часов (и далее – дней, недель, месяцев) эксплуатации, то можно прийти к таким показателям, что станет страшно!..

Частенько в паспортах указывается диапазон расхода – обозначены границы минимального и максимального потребления. Но и это, наверное, не станет большим подспорьем в проведении расчетов реальных потребностей.

А ведь максимально приближенный к реальности расход газа знать все же весьма полезно. Это поможет, во-первых, в планировании семейного бюджета. Ну а во-вторых, обладание такой информацией должно, вольно или невольно, стимулировать рачительных хозяев к поиску резервов экономии энергоносителей – возможно, стоит предпринять определённые шаги к тому, чтобы свести потребление к возможному минимуму.

Определение необходимой тепловой мощности для эффективного отопления дома или квартиры

Итак, отправной точкой для определения потребления газа на нужды отопления должна все же служить тепловая мощность, которая требуется для этих целей. С нее и начнём наши расчеты.

Если перебрать массу публикаций по этой теме, размещенных в интернете, то чаще всего можно встретить рекомендации проводить расчет требуемой мощности, исходя из площади отапливаемых помещений. Причем, для этого приводится константа: 100 ватт на 1 квадратный метр площади (или 1 кВт на 10 м²).

Удобно? – безусловно! Безо всяких подсчетов, не используя даже листика бумаги и карандаша, в уме производишь простейшие арифметические действия, например, для дома площадью 100 «квадратов» необходим, как минимум, 10-ваттный котел.

Ну а как с показателем точности таких расчетов? Увы, в этом вопросе все обстоит не столь благополучно…

Посудите сами.

Например, будут ли равнозначны по потребности в тепловой энергии помещения одинаковой площади, скажем, в Краснодарском крае или областях Серверного Урала? Если ли разница между комнатой, граничащей с отапливаемыми помещениями, то есть имеющей всего одну внешнюю стену, и угловой, да к тому же еще выходящей на наветренную северную сторону? Потребуется ли дифференцированный подход к помещениям с одним окном или имеющим панорамное остекление? Можно перечислить еще несколько подобных, вполне очевидных, кстати, пунктов – в принципе, мы этим и займемся практически, когда перейдем к расчёту.

Итак, не подлежит сомнению то, что на необходимое количество тепловой энергии для отопления помещения влияет не только его площадь – необходимо учесть еще целый ряд факторов, связанных с особенностями региона и конкретного места расположения здания, и со спецификой конкретной комнаты. Понятно, что комнаты в пределах даже одного дома могут иметь существенные различия. Таким образом, самым правильным будет такой подход – просчитать потребность в тепловой мощности для каждого помещения, где будут устанавливаться приборы отопления, а затем, суммировав их, найти общий показатель за дом (квартиру).

Предлагаемый алгоритм проведения вычислений не претендует на «звание» профессионального расчета, но обладает достаточной степенью точности, проверенной практикой. Чтобы предельно упростить задачу нашему читателю, предлагаем воспользоваться расположенным ниже онлайн-калькулятором, в программу которого уже внесены все необходимые зависимости и поправочные коэффициенты. Для большей ясности в текстовом блоке под калькулятором будет приведена краткая инструкция по проведению вычислений.

Калькулятор расчета необходимой тепловой мощности для отопления (для конкретного помещения)

Расчет проводится для каждого помещения отдельно.
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках.

Нажмите «РАССЧИТАТЬ ПОТРЕБНУЮ ТЕПЛОВУЮ МОЩНОСТЬ»

Площадь помещения, м²

100 Вт на кв. м

Высота потолка в помещении

До 2,7 м 2,8 ÷ 3,0 м 3,1 ÷ 3,5 м 3,6 ÷ 4,0 м более 4,1 м

Количество внешних стен

Нет одна две три

Внешние стены смотрят на:

Положение внешней стены относительно зимней «розы ветров»

Уровень отрицательных температур воздуха в регионе в самую холодную неделю года

35 °С и ниже от - 30 °С до - 34 °С от - 25 °С до - 29 °С от - 20 °С до - 24 °С от - 15 °С до - 19 °С от - 10 °С до - 14 °С не холоднее - 10 °С

Какова степень утепленности внешних стен?

Внешние стены не утеплены Средняя степень утепления Внешние стены имеют качественное утепление

Что расположено снизу?

Холодный пол по грунту или над неотапливаемым помещением Утепленный пол по грунту или над неотапливаемым помещением Снизу расположено отапливаемое помещение

Что расположено сверху?

Холодный чердак или неотапливаемое и не утепленное помещение Утепленный чердак или иное помещение Отапливаемое помещение

Тип установленных окон

Количество окон в помещении

Высота окна, м

Ширина окна, м

Двери, выходящие на улицу или на холодный балкон:

Пояснения по проведению расчетов тепловой мощности

  • Начинаем с площади комнаты. И в качестве исходной величины все же примем те самые 100 Вт на каждый квадратный метр, но по ходу расчета будет внесено множество поправочных коэффициентов. В поле ввода (бегунком слайдера) необходимо указать площадь помещения, в квадратных метрах.
  • Безусловно, на необходимое количество энергии оказывает влияние объем комнаты – для стандартных потолков в 2.7 м и для высоких, в 3,5÷4 м итоговые значения будут различаться. Поэтому программа расчета введет поправку на высоту потолка – ее необходимо выбрать их предлагаемого выпадающего списка.
  • Большое значение имеет количество стен помещения, непосредственно контактирующих с улицей. Поэтому следующим пунктом необходимо указать количество внешних стен: предлагаются варианты от «0» до «3» – каждому из значений будет соответствовать свой поправочный коэффициент.
  • Даже в очень морозный, но ясный день на микроклимат в помещении может оказывать Солнце – сокращается количество теплопотерь, прямые лучи, проникающие в окна, чувствительно подогревают помещение. Но это характерно только для стен, выходящих на южную сторону. Укажите очередным пунктом ввода данных примерное расположение внешней стены комнаты – и программа внесет необходимые коррективы.

  • Многие дома, как загородные, так и в пределах городской застройки, расположены таким образом, что внешняя стена помещения большую часть зимы оказывается наветренной. Если хозяевам известно направление преобладающей зимней «розы ветров», то можно учесть в расчетах и это обстоятельство. Понятно, что наветренная стена будет всегда выхолаживаться сильнее – и программа расчета ведет соответствующий поправочный коэффициент. Если такой информации нет, то можно данный пункт пропустить – но в этом случае расчет будет проведен для самого неблагоприятного расположения.

  • Следующий параметр внесет поправку на климатическую специфику вашего региона проживания. Речь идет о показателях температуры, которые свойственны в данной местности для самой холодной декады зимы. Важно – речь идет именно о тех значениях, которые являются нормой, то есть не входят в разряд тех аномальных морозов, которые раз в несколько лет нет-нет, да и «посещают» любой регион, и потом из-за своей нетипичности надолго остаются в памяти.

  • Уровень теплопотерь напрямую связан со степенью . В следующем поле ввода данных необходимо оценить ее, выбрав один из трех вариантов. При этом полноценно утепленной можно считать стену лишь в том случае, если термоизоляционные работы были проведены в полном объеме с базированием на результатах проведенных теплотехнических расчетов.

Цены на PIR плиты

К средней степени утеплённости можно отнести стены, выложенные из «теплых» материалов, например, натурального дерева (бревно, брус), газосиликатных блоков толщиной в 300-400 мм, пустотного кирпича – кладка в полтора или два кирпича.

В списке указаны еще и вовсе неутепленные стены, но, по сути, в жилом доме такого вообще не должно быть по определению – никакая система отопления не сможет эффективно поддерживать комфортный микроклимат, а затраты на энергоносители будут «космическими».

  • Немалое количество тепловых потерь всегда приходится на перекрытия – полы и потолки помещений. Поэтому будет вполне разумным оценить «соседство» рассчитываемой комнаты, так сказать, по вертикали, то есть сверху и снизу. Следующие два поля нашего калькулятора посвящены именно этому – в зависимости от указанного варианта программа расчета введет необходимые поправки.

  • Целая группа поле ввода данных посвящена окнам.

— Во-первых, следует оценить качество окон, так как от этого всегда зависит то, насколько быстро будет выстуживаться помещение.

— Затем необходимо указать количество окон и их размеры. На основании этих данных программа рассчитает «коэффициент остекления», то есть отношение площади окон к площади комнаты. Полученное значение станет основой для внесения соответствующей корректировки итогового результата.

  • Наконец, в рассматриваемом помещении может иметься дверь «на холод» - непосредственно на улицу, на балкон или, скажем, ведущая в неотапливаемое помещение. Если этой дверью регулярно пользуются, то каждое ее открытие будет сопровождаться немалым притоком холодного воздуха. А это означает, что не систему отопления данной комнаты ляжет дополнительная задача компенсации таких теплопотерь. Выберите свой вариант в предлагаемом списке – и программа внесет необходимые корректировки.

После ввода данных остается лишь нажать на кнопку «Рассчитать» - и будет получен ответ, выраженные в ваттах и киловаттах.

Теперь о том, как подобный расчет удобнее всего будет провести на практике. Видится оптимальным такой способ:

— Для начала берется план своего дома (квартиры) – в нем наверняка указаны все необходимые размерные показатели. В качестве примера возьмем совершенно производный план этажа загородного жилого дома.

— Далее, имеет смысл составить таблицу (например, в Excel, но можно и просто на листе бумаги). Таблица – произвольной формы, но в ней должны быть перечислены все помещения, на которые распространяется действие системы отопления, и указаны характерные особенности каждого из них. Понятно, что значение зимних температур для всех помещений будет единой величиной, и его достаточно ввести один раз. Пусть, для примера, это будет -20 °С.

Например, таблица может выглядеть так:

Помещение Площадь, высота потолков Внешние стены, количество, расположение относительно сторон света и розы ветров, степень термоизоляции Что находится сверху и снизу Окна – тип, количество, размеры, наличие двери на улицу Необходимая тепловая мощность
ИТОГО ЗА ДОМ 196 м² 16,8 кВт
1 ЭТАЖ
Прихожая 14,8 м²,
2.5 м
одна, Север,
наветренная,
т/и –полноценная
снизу – теплый пол по грунту,
сверху – отапливаемое помещение
Окон нет,
дверь одна
1,00 кВт
Кладовая 2,2 м²,
2.5 м
одна, Север,
наветренная,
т/и – полноценная
то же самое Одно, двойной стеклопакет,
0,9×0,5 м,
двери нет
0,19 кВт
Сушилка 2,2 м²,
2.5 м
одна, Север,
наветренная,
т/и – полноценная
то же самое Одно, двойной стеклопакет,
0,9×0,5 м,
двери нет
0,19 кВт
Детская 13,4 м²,
2.5 м
Две, Север –Восток,
наветренная,
т/и – полноценная
то же самое Два, тройной стеклопакет,
0,9×1,2 м,
двери нет
1,34 кВт
Кухня 26,20 м²,
2.5 м
Две, Восток – Юг,
параллельно направлению ветра,
т/и – полноценная
то же самое Одно, двойной стеклопакет,
3×2,2 м,
двери нет
2,26 кВт
Гостиная 32,9 м²,
3 м
Одна, Юг,
подветренная,
т/и – полноценная
то же самое Два, тройной стеклопакет,
3×2,2 м,
двери нет
2,62 кВт
Столовая 24,2 м²,
2,5 м
Две, Юг-Запад,
подветренная,
т/и – полноценная
то же самое Два, тройной стеклопакет,
3×2,2 м,
двери нет
2,16 кВт
Комната для гостей 18,5 м²,
2,5 м
Две, Запад-Север,
наветренная,
т/и – полноценная
то же самое Одно, тройной стеклопакет,
0,9×1,2 м,
двери нет
1,65 кВт
Итого по первому этажу суммарно: 134,4 м² 11,41 кВт
2 ЭТАЖ
… и так далее

— Остается лишь открыть калькулятор – и весь расчет займет считанные минуты. А затем необходимо суммировать результаты (можно сначала по этажам – а потом за все здание в целом), чтобы получить искомую тепловую мощность, необходимую для полноценного отопления.

Кстати, обратите внимание – в таблице примером приведены реальные результаты расчета. И они довольно существенно отличаются от тех, что могли быть получены при использовании соотношения 100 Вт → 1 м². Так, только на первом этаже с площадью 134,4 м² такое различие, в меньшую сторону, оказалось около 2 кВт. На для других условий, например, для более сурового климата или для не столь совершенной термоизоляции, разница может быть совершенно иной и даже иметь другой знак.

Итак, для чего нам нужны результаты этого расчета:

  • Прежде всего, полученное для каждой конкретной комнаты необходимое количество тепловой энергии позволяет правильно подобрать и расставить приборы теплообмена – имеются в виду радиаторы, конвекторы, системы «теплый пол».
  • Суммарное значение за весь дом становится ориентиром для выбора и приобретения оптимального котла отопления – как уже говорилось выше, берут мощность чуть больше расчётной, чтобы оборудование никогда не работало на пределе своих возможностей, и в то же время – гарантированно справлялось со своей прямой задачей даже при самых неблагоприятных условиях.
  • И, наконец, тот же суммарный показатель станет для нас отправной точкой при проведении дальнейших расчетов планируемого расхода газа.

Проведение расчетов расхода газа на нужды отопления

Расчет потребления сетевого природного газа

Итак, переходим непосредственно к расчетам потребления энергоносителей. Для этого нам потребуется формула, показывающая, какое количество тепла производится при сгорании определённого объема (V ) топлива:

W = V × H × η

Чтобы получить конкретно объем, представим это выражение несколько иначе:

V = W / (H × η)

Разбираемся с величинами, входящими в формулу.

V – это тот самый искомый объем газа (кубических метров), сжигание которого даст нам необходимое количество тепла.

W – тепловая мощность, требующаяся для поддержания в доме или квартире комфортных условий проживания – та самая, расчётом которой мы занимались только что.

Та самая, вроде бы, но все же – не совсем. Требуется дать несколько разъяснений:

Цены на теплый пол

теплый пол

  • Во-первых, это ни в коем случае не паспортная мощность котла – многие допускают подобную ошибку.
  • Во-вторых, приведённый выше расчет необходимого количества тепла, как мы помним, проводился для самых неблагоприятных внешних условий – для максимальных холодов, да еще и наряду с постоянно дующим ветром. На деле же таких дней в течение зимы бывает не так уж и много, и, вообще, нередко морозы чередуются с оттепелями, или устанавливаются на уровне, весьма далеком от указанной критической отметки.

Далее, правильно отрегулированный котел никогда не будет работать беспрерывно – за уровнем температуры обычно следит автоматика, выбирая наиболее оптимальный режим. А раз так, то для расчета среднестатистического потребления газа (не пикового, заметьте) и этой расчетной величины будет слишком много. Без особых опасений совершить серьезную ошибку в расчетах, полученное суммарное значение мощности можно смело «располовинить», то есть принимать для дальнейших вычислений 50% от рассчитанной величины. Практика показывает, что в масштабах всего отопительного сезона, особенно учитывая сниженное потребление во второй половине осени и в начале весны, так обычно и получается.

H – под этим обозначением кроется теплота сгорания топлива, в нашем случае – газа. Параметр этот является табличным и обязательно должен соответствовать определенным стандартам.

Правда, есть и в этом вопросе несколько нюансов.

  • Во-первых, следует обращать внимание на тип используемого природного сетевого газа. Как правило, в бытовых сетях газоснабжения применяется газовая смесь G20 . Тем не менее, встречаются сети, в которых потребителям подается смесь G25 . Ее отличие от G20 – более высокая концентрация азота, что значительно снижает теплотворную способность. Следует навести справки в региональном газовом хозяйстве, какой газ поступает в ваши дома.
  • Во-вторых, удельная теплота сгорания также может несколько различаться. К примеру, можно встретить обозначение Hi – это так называемая низшая удельная теплота, которую принимают для расчета систем с обычными котлами отопления. Но существует еще и величина Hs – высшая удельная теплота сгорания. Суть в том, что продукты сгорания природного газа содержат очень большое количество водяных паров, которые обладают немалым тепловым потенциалом. И если его также применить с пользой, тепловая отдача от оборудования заметно повысится. Такой принцип реализован в современных котлах, в которых скрытая энергия водяного пара, за счет его конденсации, также отдается на нагрев теплоносителя, что дает прирост теплоотдачи в среднем на 10%. Значит, если в вашем доме (квартире) установлен конденсационный котел, то необходимо оперировать именно высшей теплотой сгорания – Н s .

В различных источниках величина удельной теплоты сгорания газа указывается или в мегаджоулях, или в киловаттах в час на кубометр объема. В принципе, перевести несложно, если знать, что 1 кВт = 3,6 МДж. Но чтобы было еще проще, в таблице ниже указаны значения в обеих единицах измерения:

Таблица значений удельной теплоты сгорания природного газа (по международному стандарту DIN EN 437)

η – этим символом принято обозначать коэффициент полезного действия. Его суть в том, что он показывает, насколько полно в данной модели отопительного оборудования выработанная тепловая энергия используется именно на нужды отопления.

Такой показатель всегда указывается в паспортных характеристиках котла, причем, нередко приводится сразу два значения, для низшей и высшей теплоты сгорания газа. Например, можно встретить такую запись Hs / Hi – 94.3 / 85%. Но обычно, чтобы получить результат, более приближенный к реальности, оперируют все же величиной Hi.

В принципе, со всеми исходными данными мы определились, и можно переходить к расчетам. И чтобы упростить читателю задачу – ниже расположен удобный калькулятор, который подсчитает средний расход «голубого топлива» в час, в день, в месяц и в целом за сезон.

Калькулятор расчета расхода сетевого газа на нужды отопления

Необходимо ввести всего два значения – полную необходимую тепловую мощность, полученную по алгоритму, который приводился выше, и КПД котла. Кроме того, нужно выбрать тип сетевого газа и, при необходимости, указать то, что ваш котел является конденсационным.