Бытовые электроприборы

Функции митохондриальной днк. Особенности строения митохондриальной ДНК

Функции митохондриальной днк. Особенности строения митохондриальной ДНК

Гены, оставшиеся в ходе эволюции в «энергетических станциях клетки», помогают избежать проблем в управлении: если в митохондрии что-то сломается, она может починить это сама, не дожидаясь разрешения из «центра».

Наши клетки получат энергию с помощью особых органелл, называемых митохондриями, которых часто так и называют энергетическими станциями клетки. Внешне они выглядят как цистерны с двойной стенкой, причём внутренняя стенка очень неровная, с многочисленными сильными впячиваниями.

Клетка с ядром (окрашено синим) и митохондриями (окрашены красным). (Фото NICHD / Flickr.com.)

Митохондрии в разрезе, выросты внутренней мембраны видны как продольные внутренние полосы. (Фото Visuals Unlimited / Corbis.)

В митохондриях происходит огромное количество биохимических реакций, в ходе которых «пищевые» молекулы постепенно окисляются и распадаются, а энергия их химических связей запасается в удобной для клетки форме. Но, кроме того, у этих «энергетических станций» есть своя ДНК с генами, которую обслуживают собственные молекулярные машины, обеспечивающие синтез РНК с последующим синтезом белка.

Считается, что митохондрии в очень далёком прошлом были самостоятельными бактериями, которых ели какие-то другие одноклеточные существа (с большой вероятностью, археи). Но однажды «хищники» вдруг перестали переваривать проглоченных протомитохондрий, удерживая их внутри себя. Началось долгое притирание симбионтов друг к другу; в итоге те, кого проглотили, сильно упростились в строении и стали внутриклеточными органеллами, а их «хозяева» получили возможность за счёт более эффективной энергетики развиваться дальше, во всё более и более сложные формы жизни, вплоть до растений и животных.

О том, что митохондрии когда-то были самостоятельными, говорят остатки их генетического аппарата. Разумеется, если живёшь внутри на всём готовом, необходимость содержать собственные гены пропадает: ДНК современных митохондрий в человеческих клетках содержит всего 37 генов - против 20-25 тысяч тех, что содержатся в ядерной ДНК. Многие из митохондриальных генов за миллионы лет эволюции перебрались в клеточное ядро: белки, которые они кодируют, синтезируются в цитоплазме, а потом транспортируются в митохондрии. Однако тут же возникает вопрос: а почему 37 генов всё-таки остались там, где были?

Митохондрии, повторим, есть у всех эукариотических организмов, то есть и у животных, и у растений, и у грибов, и у простейших. Иан Джонстон (Iain Johnston ) из Бирмингемского университета и Бен Уильямс (Ben P. Williams ) из Института Уайтхеда проанализировали более 2 000 митохондриальных геномов, взятых у различных эукариот. С помощью особой математической модели исследователи смогли понять, какие из генов в ходе эволюции были более склонны оставаться в митохондриях.

ДНК в митохондриях представлена циклическими молекулами, не образующими связь с гистонами, в этом отношении они напоминают бактериальные хромосомы.
У человека митохондриальная ДНК содержит 16,5 тыс. н.п., она полностью расшифрована. Найдено, что митохондральная ДНК различных объектов очень однородна, отличие их заключается лишь в величине интронов и нетранскрибируемых участков. Все митохондриальные ДНК представлены множественными копиями, собранными в группы, кластеры. Так в одной митохондрии печени крысы может содержаться от 1 до 50 циклических молекул ДНК. Общее же количество митохондриальной ДНК на клетку составляет около одного процента. Синтез митохондриальных ДНК не связан с синтезом ДНК в ядре. Так же как и у бактерий митохондральная ДНК собрана в отдельную зону – нуклеоид, его размер составляет около 0, 4 мкм в диаметре. В длинных митохондриях может быть от 1 до 10 нуклеоидов. При делении длинной митохондрии от нее отделяется участок, содержащий нуклеоид (сходство с бинарным делением бактерий). Количество ДНК в отдельных нуклеоидах митохондрий может колебаться в 10 раз в зависимости от типа клеток. При слиянии митохондрий может происходить обмен их внутренними компонентами.
рРНК и рибосомы митохондрий резко отличны от таковых в цитоплазме. Если в цитоплазме обнаруживаются 80s рибосомы, то рибосомы митохондрий растительных клеток принадлежат к 70s рибосомам (состоят из 30s и 50s субъединиц, содержат 16s и 23s РНК, характерные для прокариотических клеток), а в митохондриях клеток животных обнаружены более мелкие рибосомы (около 50s). В митоплазме на рибосомах идет синтез белков. Он прекращается, в отличие от синтеза на цитоплазматических рибосомах, при действии антибиотика хлорамфеникола, подавляющего синтез белка у бактерий.
На митохондриальном геноме синтезируются и транспортные РНК, всего синтезируется 22 тРНК. Триплетный код митохондриальной синтетической системы отличен от такового, используемого в гиалоплазме. Несмотря на наличие казалось бы всех компонентов, необходимых для синтеза белков, небольшие молекулы митохондриальной ДНК не могут кодировать все митохондриальные белки, только лишь их небольшую часть. Так ДНК размером 15 тыс.н.п. может кодировать белки с суммарным молекулярным весом около 6х105. В это же время суммарный молекулярный вес белков частицы полного дыхательного ансамбля митохондрии достигает величины около 2х106.

Рис. Относительные размеры митохондрий у различных организмов.

Интересны наблюдения за судьбой митохондрий в дрожжевых клетках. В аэробных условиях дрожжевые клетки имеют типичные митохондрии с четко выраженными кристами. При переносе клеток в анаэробные условия (например, при их пересеве или при перемещении в атмосферу азота) типичные митохондрии в их цитоплазме не обнаруживаются, и вместо них видны мелкие мембранные пузырьки. Оказалось, что в анаэробных условиях дрожжевые клетки не содержат полную дыхательную цепь (отсутствуют цитохромы b и a). При аэрации культуры наблюдается быстрая индукция биосинтеза дыхательных ферментов, резкое повышение потребления кислорода, а в цитоплазме появляются нормальные митохондрии.
Расселение людей на Земле

Магнитные поля - это физические и внешние силы, вызывающие множественные реакции в клеточной биологии, которые включают изменения в обмене информации в РНК и ДНК, а также многие генетические факторы. Когда происходят изменения в планетарном магнитном поле, изменяется уровень электромагнетизма (ЭДС), непосредственно изменяющий клеточные процессы, генетическое выражение и плазму крови. Функции белков в теле человека, так же, как и в плазме крови, связаны со свойствами и влиянием ЭДС поля. Белки выполняют разнообразные функции в живых организмах, в том числе выступая в роли катализаторов метаболических реакций, производя репликацию ДНК, вызывая реакцию на возбудители и перемещая молекулы с одного места в другое. Плазма крови действует как хранилище белка в организме, защищая от инфекций и болезней, и играет жизненно важную роль в обеспечении белками, необходимыми для синтеза ДНК. Качество нашей крови и плазмы крови - это то, что дает команды всей совокупности белков, выражаясь посредством нашего генетического материала во всех клетках и тканях. Это означает, что кровь непосредственно взаимодействует с телом посредством белков, что было закодировано в нашей ДНК. Эта связь синтеза белка между ДНК, РНК и митохондриями клеток меняется в результате изменения магнитного поля.

Кроме того, наши эритроциты содержат гемоглобин, который является белком на основе четырех атомов железа, связанных с состоянием железного ядра и магнетизмом Земли. Гемоглобин в крови несет кислород от легких к остальным частям тела, где кислород освобождается для сжигания питательных веществ. Это обеспечивает энергией работу нашего тела, в процессе, называемом энергетическим метаболизмом. Это важно, поскольку изменения в нашей крови непосредственно связаны с энергией в процессе обмена веществ в нашем теле и сознании. Это станет еще более очевидно, когда мы станем обращать внимание на эти знаки, изменяющие потребление энергии и использование энергетических ресурсов на планете. Вернуть их законному владельцу, также означает изменение энергетического метаболизма в микрокосме нашего тела, отражая изменения макрокосма Земли. Это важная стадия окончания чахоточного моделирования Диспетчеров, чтобы достигнуть баланса принципов сохранения для того, чтобы найти внутреннее равновесие, и, следовательно, достичь энергетического баланса внутри этих систем. Важная часть этих изменений заключается в тайне высших функций митохондриона.

Митохондриальная ДНК Матери

Когда мы сравниваем гендерный принцип, присущий нашему созданию и то, что наш принцип Матери возвращает энергетическое равновесие в земное ядро посредством магнитного поля, следующим шагом становится восстановление митохондриальной ДНК. Митохондриальная ДНК - это ДНК, расположенная в митохондриях, структурах внутри клеток, преобразующих химическую энергию, поступающую с пищей, в форму, которую клетки могут использовать, - аденозин трифосфат (АТФ). АТФ измеряет световой коэффициент, проводимый клетками и тканями тела, и непосредственно связан с воплощением духовного сознания, которое является энергией и важно для энергетического метаболизма.

Митохондриальная ДНК - это только небольшая часть ДНК в клетке; большая часть ДНК содержится в ядре клетки. У большинства видов на Земле, включая людей, митохондриальная ДНК наследуется исключительно от матери. Митохондрии имеют свой собственный генетический материал и механизм создания своих собственных РНК и новых белков. Этот процесс называют биосинтезом белка. Биосинтез белка относится к процессам, посредством которых биологические клетки генерируют новые наборы белков.

Без правильно функционирующей митохондриальной ДНК человечество не может эффективно вырабатывать новые белки для синтеза ДНК, а также сохранять уровень ATФ, необходимый для генерации света в клетке, чтобы воплотить наше духовное сознание. Таким образом, вследствие повреждения митохондриальной ДНК, человечество крайне пристрастилось к потреблению всего во внешнем мире для заполнения энергетической пустоты внутри наших клеток. (См. Чужеродные установки Негативной Инопланетной Программы для зависимостей).

Не зная ничего другого в нашей недавней истории и стерев воспоминания, человечество не сознает, что мы существовали с значительно дисфункциональным митохондрионом.

Это прямой результат извлечения из Земли ДНК Матери, магнитных принципов, протонной структуры и наличие синтетической чужеродной версии «Темной Матери», которая была помещена в планетарную архитектуру, чтобы подражать ее функциям. Человечество существовало на планете без своего истинного Материнского принципа, и очевидно это было записано в клетках нашей митохондриальной ДНК. Этот было описано много раз как вторжение Негативной Инопланетной Программы в Планетарные Логосы посредством управления магнитосферой и магнитным полем.

Криста

Внутренняя митохондриальная мембрана распределяется в многочисленных кристах, которые увеличивают площадь поверхности внутренней митохондриальной мембраны, увеличивая ее способность производить АТФ. Именно эта область митохондриона, когда функционирует правильно, увеличивает энергию АТФ и генерирует свет в клетках и тканях тела. Высшая функция крист в митохондрионе активизируется в группах Вознесения, начинаясь в этом цикле. Название «криста» было дано в результате научного открытия, поскольку она непосредственно связана с активацией кристаллического гена.

Изменение рецепторов эстрогена

Материнская митохондриальная ДНК и магнитные сдвиги имеют множество факторов, которые вносят коррективы и вызывают симптомы в репродуктивных циклах женщин. Гормоны эстрогена активизируют рецепторы эстрогена, которые являются белками, входящими в клетки и связаны с ДНК, внося изменения в генетическое выражение. Клетки могут общаться друг с другом, выпуская молекулы, которые передают сигналы другим восприимчивым клеткам. Эстроген выделяется тканями, такими как яичники и плацента, проходя через клеточные мембраны принимающих клеток, и связывается с рецепторами эстрогена в клетках. Рецепторы эстрогена управляют передачей сообщений между ДНК и РНК. Таким образом, в настоящее время многие женщины замечают необычные, странные менструальные циклы, вызванные доминированием эстрогена. Изменения уровня эстрогена происходят и у мужчин, и у женщин, поэтому прислушайтесь к своему телу, возможно, необходимо помочь поддержать эти изменения. Позаботьтесь о печени и детоксикации, исключите потребление сахара и пищу, стимулирующую и увеличивающую гормоны, следите за бактериальным балансом в кишечнике и теле - это полезно для поддержания баланса эстрогена.

Митохондриальная болезнь истощает энергию

Митохондриальные болезни возникают в результате генетических мутаций, отпечатанных в последовательности ДНК. Искусственная архитектура, помещенная на планету, например, инопланетные механизмы, стремящиеся создать генетические модификации для узурпирования Материнской ДНК, которые проявляются как мутации и повреждение ДНК всех видов. Митохондриальные болезни характерны блокировкой энергии в теле, вследствие того, что болезнь накапливается, наследуя материнскую генетику в наследственных родословных.

Митохондрион важен для ежедневного функционирования клеток и энергетического метаболизма, который также ведет к духовному развитию души и воплощению Сверхдуши (монады). Митохондриальная болезнь уменьшает эффективное генерирование энергии, доступной для тела и сознания, останавливает рост развития человека и духовный рост. Таким образом, тело быстрее стареет и повышается риск заболеваний; личная энергия деактивируется, и, таким образом, исчерпывается. Это значительно ограничивает количество пригодной энергии, доступной для развития мозга и работы всех неврологических системных. Истощение энергетических запасов для мозгового и неврологического развития способствует спектрам аутизма, нейродегенерации и других недостатков работы мозга. Дефекты в митохондриальных генах связаны с сотнями «клинических» заболеваний крови, мозга и неврологических расстройствах.

Функции крови, мозга и неврологические функции планетарного тела приравниваются к архитектуре лей-линий, чакровых центров и систем Звездных Врат, которые управляют энергетическим потоком (кровью), чтобы сформировать тело сознания, известное как Древовидная Сеть 12 Планетарного Храма. Функции крови, мозга и неврологические функции человеческого тела приравниваются к такой же Древовидной Сети 12 Храма Человека. Как только Храм и установки ДНК повреждены или видоизменены, повреждается кровь, мозг и нервная система. Если наша кровь, мозг и нервная система заблокированы или повреждены, мы не можем переводить язык, поддерживать связь с , строить многомерные световые тела для получения высшей мудрости (Софии). Наши виды языка на многих уровнях, включая наш язык ДНК, перепутаны и смешаны теми, кто стремился поработить и ожесточить Землю.

Как мы знаем, большая часть источников кинетической или других внешних энергий активно контролируется властвующей элитой для подавления развития человека и ограничения возможностей равноправного использования или справедливого обмена ресурсами для совместного использования населением Земли. Стратегия ы состоит в том, чтобы управлять всей энергией и источниками энергии (даже контроль над ДНК и душой), таким образом, создается правящий класс и класс невольников или рабов. Используя метода группы Ориона «разделяй и властвуй», намного легче управлять населением, при этом оно травмировано страхом, невежественно и находится в нищете.

Перевод: Oreanda Web

Значітельная часть читателей моих блогов, безусловно, в той или иной мере имеет представление о сущности и характере наследвания митохондриальной ДНК. Благодаря доступности коммерческого тестрования, у многих из моих (по)читателей определены митохондриальные гаплотипы в отдельных регионах митохондриона (CR,HVS1, HVS2), а некоторые даже имеют полный митохондриальный сиквенс (все 16571 позиции). Таким образом, многим удалось пролить свет на свою «глубокую генеалогию», восходящую к общей точке коалисценции всех ныне существующих женских генетических линий. Романтические попгенетики нарекли эту точку «митохондриальной Евой», хотя эта точка все лишь является математической абстракцией и в силу этого любое именарекание носит сугубо конвенциональный характер.

Небольшой экскурс для новичков.
Митохондриальное ДНК (далее мтДНК) передается от матери к ребенку. Поскольку только женщины могут передавать мтДНК своим потомкам, тестирование мтДНК дает информацию о матери, ее матери и так далее по прямой материнской линии. мтДНК от матери получают как мужчины, так и женщины, по этой причине в проведении тестирования мтДНК могут принимать участие и мужчины, и женщины. Хотя в мтДНК и происходят мутации, их частота относительно низка. В течении тысячелетий данные мутации накапливались, и по этой причине женская линия в одной семье генетически отличается от другой. После того, как человечество расселилось по планете, мутации продолжили случайное появление в разделенных растоянием популяциях некогда единого человеческого рода. По этой причине мтДНК можно использовать для определения географического происхождения данной семейной группы. Результаты тестирования мтДНК сравниваются с так называемой «Станадртной кембриджской последовательностью» (CRS) — первой установленной в 1981 году в Кембридже последовательностью мтДНК (* прим — сейчас идет пересмотр вопроса о использовании CRS в качестве референсного митосиквенса). В итоге ученые устанавливают гаплотип исследуемого человека. Гаплотип – это ваша индивидуальная генетическая характеристика. При рассмотрении мтДНК – это ваш набор отклонений от «кембриджской стандартной последовательности». После сравнения вашей последовательности с последовательностями из базы данных, устанавливается ваша гаплогруппа. Гаплогруппа — это генетическая характеристика определенной общности людей, которые имели одну общую «пра»бабушку, более недавнюю, чем «митохондриальная Ева». Их древние предки часто передвигались в одной группе в ходе миграций. Гаплогруппа показывает, к какой генеалогической ветви человечества вы относитесь. Их обозначают буквами алфавита, от А до Z, плюс многочисленные подгруппы. Например, европейские гаплогруппы – H, J, K, T, U, V, X. Ближневосточные – N и M. Азиатские – A, B, C, D, F, G, M, Y, Z. Африканские – L1, L2, L3 и M1. Полинезийская – B. Американские индейцы – А, B, C, D, и редко Х. В последнее время к европейским гаплогруппам добавили N1, U4, U5 и W.

Остановимся на европейских митогаплогруппах – H, J, K, T, U, V, X, N1, U4, U5 и W . Большинство из них в свою учередь распадается на дочерние субклады (дочерние ветви, например дочерний субклад гаплогруппы U5 — субклад U5b1 («Урсула»), чей пик распространения приходится на Прибалтику и Финляндию. Стоит отметить, что матриархи женских линий часто просто именуются женскими именами. Основу этой традиции заложил автор книги «Семь дочерей Евы» Брайан Сайкс, который придумал для предполагаемых прародительниц большей части населения Европы имена - Урсула (гаплогруппа U), Ксения (X), Елена (H), Велда (V), Тара (T), Катрин (K) и Жасмин (J). Можно проследить и нанести на карту магистральные дороги, по которым они и остальные наши прапрабабки кочевали во времени и пространстве, и рассчитать предполагаемое время для каждой развилки - появления новой мутации, от первых «дочерей Евы» до самых недавних - гаплогрупп I и V, которым «всего» около 15 000 лет.

Часто задаю вопрос, чем отличается ядерное ДНК от мтДНК? Согласно современным научным представлениям, миллиарды лет назад митохондрии были независимыми бактериями, которые поселились в клетках примитивных эукариотических (имеющих клеточное ядро с линейными хромосомами) организмов и «взяли на себя » функцию производства тепла и энергии в клетек хозяина. За время совместной жизни часть своих генов они растеряли за ненадобностью при жизни на всем готовом, часть - передали в ядерные хромосомы, и сейчас двойное кольцо мтДНК человека состоит всего из 16 569 пар нуклеотидных оснований. Большую часть митохондриального генома занимают 37 генов. Из-за высокой концентрации свободных радикалов кислорода (побочных продуктов окисления глюкозы) и слабости механизма восстановления ошибок при копировании ДНК мутации в мтДНК происходят на порядок чаще, чем в ядерных хромосомах. Замена, выпадение или добавка одного нуклеотида здесь происходят примерно один раз в 100 поколений - около 2500 лет. Мутации в митохондриальных генах - нарушения в работе клеточных энергостанций - очень часто бывают причиной наследственных болезней. Единственная функция митохондрий - окисление глюкозы до углекислого газа и воды и синтез за счет выделяющейся при этом энергии клеточного топлива - АТФ и универсального восстанавливающего агента (переносчика протонов) НАДН. (НАДН - это никотинамидадениндинуклеотид - попробуйте произнести без запинки.) Даже для этой простой задачи нужны десятки ферментов, но большинство генов белков, необходимых для работы и текущего ремонта митохондрий, давно перешли в хромосомы клеток «хозяев». В мтДНК остались только гены транспортных РНК, поставляющих аминокислоты к синтезирующим белки рибосомам (обозначены однобуквенными латинскими символами соответствующих аминокислот), два гена рибосомальных РНК - 12s RNA и 16s RNA (гены белков митохондриальных рибосом находятся в ядре клетки) и некоторые (не все) гены белков основных митохондриальных ферментов - НАДH-дегидрогеназного комплекса (ND1-ND6, ND4L), цитохром-c-оксидазы (COI-III), цитохрома b (CYTb) и двух белковых субъединиц фермента АТФ-синтетазы (ATPase8 и 6) . Для нужд молекулярной или ДНК-генеалогии используется некодирующий участок - D-петля, состоящая из двух гипервариабельных регионов, низкого и высокого разрешения - HVR1 (ГВС1) и HVR2 (ГВС2).

Cтоит сказать пару слов о важности изучения мтДНК с точки зрения медицинской генетики.
Разумеется, уже и раньше производились исследования на предмет ассоции определенных заболеваний с отдельными женскими генетичиескими линиями. Например, в одном из исследований было высказано предположение, что разложение оксидативной фосфорилации митохлорионов, связанное с SNP, определяющим гаплогруппу J(asmine) , становится причиной повышенной температуры тела в фенотипе носителей данной гаплогруппы. Это связывают с повышенным присутствием данной гаплогруппы на севере Европы, в частности, в Норвегии. Кроме того, у лиц с митохондриальной гаплогруппой J, согласно другому исследованию, быстрее развивается СПИД и они быстрее умирают по сравнению с другими ВИЧ-инфицированными. В ісследованіях указывалось, что филогенетически значимые мутации митохондриона влекли за собой характер экспресии генов в фенотипе.

Далее, сестринская по отношению к J митохондриальная гаплогруппа T связана со сниженной подвижностью сперматозоидов у мужчин. Согласно публикации кафедры биохимии и молекулярно-клеточной биологии Университета Сарагосы, гаплогруппа T представляет собой слабую генетическую предрасположенность к астенозооспермии. Согласно некоторым исследованиям, наличие гаплогруппы T связано с повышенным риском коронарно-артериального заболевания. Согласно другому исследованию, носители T менее склонны к диабету. Несколько пилотных медицинских исследований показали, что наличие гаплогруппы T связано с пониженным риском болезней паркинсона и Альцгеймера.

Впрочем, уже следущий пример показывает, что результаты анализа связи женских генетических линий и заболеваний зачастую противоречат друг другу. Например, носители древнейшей европейской митогаплогруппы UK мало восприимчивы к синдрому приобретённого иммунного дефицита. И в тоже самое время одна подгруппа U5a считается особо восприимчивой к синдрому приобретённого иммунного дефицита.

Более ранние исследования показали наличие положительной корреляции между принадлежностью к гаплогруппе U и риском развития рака простаты и рака прямой кишки. Происходящая от UK через cубклад U8 гаплогруппа К (Катрин), также как и ее родительские линии характеризуется повышенным риском инсульта и хроніиеской прогрессирующей офтальмоплегией.

Мужчины, принадлежащие к доминрующей в Европе женской линии H(Helen — Хелена, ветвь сводной группы H характеризуются самым низким риском астенозооспермии (это заболевание, при котором уменьшается мотильность сперматозоидов). Также эта гаплогруппа характеризуется высокой сопротивляемостью организма и сопративляемостью прогрессии СПИДА. Вместе с тем, для H характерен высокий риск заболевания болезнью Альцгеймера.Для сравнения — риск развития болезни Паркинсона у носителей женской генетической линии H (Helen) намного выше аналогичного риска у представителей линии (JT). Кромэ того, представители линн H имеют самую высокую сопративляемость к сепсису.

Представители митохондриальных линий I, J1c, J2, K1a, U4, U5a1 and T имеют пониженный (в сравнении с среднестатистическим) риск развития болезни Паркинсона.Женщины генетических линий I (Ирен), J (Жасмін) і T (Тара) произвели на свет больше всего долгожителей, поэтому попгенетики в шутку называют эти митогаплогруппы гаплогруппами долгожителей. Но не все так хорошо. Некоторые представители субклад гаплогруппы J и T (особенно J2) страдают от редкого генетически обусловленного заболевания (Leber hereditary optic neuropathy), связанного с экспрессией гена, ответственного за наследуемую по материнской линии слепоту.

Принадлежность к митогаплогруппе N является факором развития рака груди. Впрочем, тоже самое касается и других европейских митогаплогрупп (H, T, U, V, W, X), за исключением K. Наконец, носители женской митохондриальной линии X («Ксения»), имеют в митохондрионе мутацию, повышающую риск развития диабета второго типа, кардиомиопатии и эндометриального рака. Представители сводной макромитогаплогруппы IWX имеют самую высокую сопротивляемость развитию СПИДА.

Важную роль играют митохондрии и в возникщей сравнительно недавно спортивной генетике.

Часто, читая описание спортивных препаратов и фуд-сапплементов, я наталкивался на упоминание о том, что тот или иной активный элемент препарата ускоряет метаболизм или транспортировку определенных соединений в митохондрию. В первую очередь это касается L-карнитина, креатина и BCAA. Поскольку митохондрия выполняет в клетке роль генератора энергии, то поэтому эти наблюдения представляются мне логичными и правдоподобными.

Поэтому остановимся на рассмотрении этого вопроса несколько подробнее.

По мнению некоторых ученых, к раннему старению организма приводит дефицит энергии. Чем меньше в клетках энергии, тем меньше усилий будет направлено на восстановление и удаление токсинов. Как говорится, «не до жиру, быть бы живу». Но выход есть всегда: здоровое питание плюс маленькие биохимические тонкости смогут запустить вновь клеточные электростанции. И первое о чем советуют вспомнить – это карнитин.

Начиная со зрелого возраста митохондрии, клеточные электростанции, начинают замедлять свой пыл, что приводит к снижению энергопродукции. Клетка переходит к жесткой экономии, при которой о режиме «форсажа» не стоит и мечтать. Недостаток энергии приводит к дисфункции других клеточных органелл и вновь отражается на митохондриях. Порочный круг. Это и есть старение, точнее, его внутреннее проявление.

«Вы настолько молоды, насколько молоды ваши митохондрии», — любит заявлять диетолог Роберт Крайхон. Посвятив много лет изучению биохимии клеток, он нашел один из способов влиять на продукцию энергии митохондриями, то есть на старение. Этот способ — карнитин и его активная форма L-карнитин.

Карнитин — не аминокислота, так как он не содержит аминогруппу (NH2). Он больше напоминает кофермент или, если угодно, водорастворимое витаминоподобное соединение. Почему же карнитин привлекает внимание диетологов?

Как известно, жирные кислоты являются основным топливом для мышц, особенно миокарда. Около 70% энергии образуется в мышцах от сжигания жиров. Карнитин осуществляет транспорт длинноцепочечных жирных кислот через мембрану митохондрий. Небольшое количество карнитина (около 25%) синтезируется организмом из аминокислоты лизина. Остальные 75% мы должны получить с пищей.

Но сегодня мы получаем слишком мало карнитина. Говорят, что наши предки ежедневно потребляли минимум 500 мг карнитина. Среднестатистический человек в современном обществе получает с пищей только 30-50 мг в сутки…

Недостаток карнитина приводит к снижению производства энергии и к дегенерации. Меньше энергии — беднее физиологические резервы. Классическая картина — пожилые люди, организм которых испытывает «энергетический кризис». Если бы энергии было достаточно организму, он мог бы успешно осуществлять строительство и обновление клеточных мембран, поддерживать целостность клеточных структур, защиту генетической информации. Наша иммунная система также зависит от адекватного производства энергии.

Роберт Крайхон считает, что нам нужно больше карнитина по мере того, как организм начинает увядать. Это шаг в сторону омоложения и наполнения клеток энергией, чтобы они могли лучше функционировать, а также защитить себя от свободных радикалов и патогенных микроорганизмов. [ Кстати, полтора года тому назад я проводил пилотное обследование у физиолога на предмет определения биологического возраста. По таблице физиолога, результаты замеров наиболее точно соотвествовали биологическому возрасту 28 лет. Если г-н Роберт Крайхон прав, то мои митохондрии на 7 лет моложе моего паспортного возраста)). А вот многие мои сверстники уже живут в долг у природы (опять-таки, за счет своих митохондрий)].


Мясо, рыба, молоко, яйца, сыр и другие продукты животного происхождения в целом содержат достаточно карнитина. Баранина и ягнятина — особенно мощные источники. Из растительных источников наиболее предпочтительны авокадо и темпе.

Конечно, раньше животные паслись на пастбищах и употребляли траву. Это было здорово, так как в таком случае животные продукты содержали большое количество карнитина и полезные омега-3 жирные кислоты, которые взаимодополняли действие друг друга. Это позволяло организму наших предков эффективно сжигать жир и иметь сильное тело. Теперь же скот кормят зерном, и в нем преобладают омега-6 жирные кислоты, обладающие провоспалительным действием, а уровень карнитина снизился. Вот почему теперь, ежедневное употребление красного мяса больше не является здоровой альтернативой. Но на этом остановимся.

Есть еще один момент, о котором стоит оговориться. Было бы наивно утверждать, что карнитин может раз и навсегда избавить человека от старения. Нет, это было бы слишком легко для человечества, хотя многие, возможно, хотели бы в это поверить.

Карнитин, как и другие полезные вещества, активирующие обмен веществ, является лишь одним из многочисленных помощников. Однако он не в состоянии коренным образом остановить ход клеточных часов, хотя, вероятно, в силах замедлить его.

Было обнаружено, что работа ишемизированного миокарда останавливается при исчерпании клеточных ресурсов креатинфосфорной кислоты, хотя в клетках остается неиспользованным ок. 90% аденозинтрифосфата. Это продемонстрировало, что аденозинтрифосфат неравномерно располагается в клетке. Используемым является не весь аденозинтрифосфат, находящийся в клетке мышцы, а только его определенная часть, сосредоточенная в миофибриллах. Результаты дальнейших опытов продемонстрировали, что связь между клеточными хранилищами аденозинтрифосфата осуществляется креатинфосфорной кислотой и изоэнзимами креатинкиназы. В обычных условиях молекула аденозинтрифосфата, синтезированная в митохондрии, передает энергию креатину, который под влиянием изоэнзима креатинкиназы превращается в креатинфосфорную кислоту. Креатинфосфорная кислота перемещается к локализациям креатинкиназных реакций, где другие изоэнзимы креатинкиназы обеспечивают регенерацию аденозинтрифосфата из креатинфосфорной кислоты и аденозиндифосфата. Высвобождающийся при этом креатин перемещается в митохондрию, а аденозинтрифосфат используется для получения энергии, в т.ч. для напряжения мышц. Интенсивность циркуляции энергии в клетке по креатинфосфорному пути намного больше скорости проникновения аденозинтрифосфата в цитоплазме. Это и является причиной падения концентрации креатинфосфорной кислоты в клетке, и обуславливает депрессию мышечного напряжения даже при незатронутости основного клеточного запаса аденозинтрифосфата.

К сожалению, люди, занимающиеся спортивной генетикой, очень мало внимания уделяют митохондриям. Мне еще не встречались исследования результатов бодибилдеров, разбитых на контрольные группы по признаку принадлежности к митохондриальным группам (при условии, что остальные «показатели» у них одинаковы). Например, дизайн эксперимента мог бы выглядеть следущим образом — выбираем культуристов одинакового возраста, веса, роста, мышечной комплекции и стажа. Предлагаем им выполнить сет одинаковых силовых упражнений (например, максимальное количество подходов жима лежа с весом 95-100 кг.) Сравниваем результаты и анализируем их исходя из априорных сведений о митогруппах спортсменов. После чего даем спортсменам комбо-питание из креатина, левокарнитина, глютомина и аминокислот. По прошествию некоторого времени, повторяем испытание и сравниваем результаты и делаем выводы о наличии/отсутствии корреляции с типом мтДНК.

Думаю, что и мои любительские исследования митохондрий могут в конечном итоге могут просветить человечество. Правда, меня в митохондриях интересуют не только и не столько генеалогия и медицинские вопросы, сколько вопросы психогенетики, в частности аспекты взаимодействия между людьми разных митогаплогруп. Я взял на себя смелость назвать эту область исследований психосоционикой. Пользуясь редкой возможностью наблюдать (в течении 4 лет) взаимодействие людей разных митогаплогрупп как минимум на 5 англоязычных формумах и 2 русскоязычных форумах, я заметил интересную тенденцию. К сожалению, у меня не было времени на то, чтобы четко артикулировать эту закономерность в дискурсивных терминах научного языка попгенетики, все пока на уровне предварительных замечаний. Но возможно, если удастся сформулировать мое наблюдение, то оно войдет в историю популяционной генетки как закон Веренича-Запорожченко.

Мои наблюдения основаны на изучении интеракции между тремя основными европейскими сводными митогаплогруппами (JT, HV, UK). К сожалению европейские митогаплогруппы I,W,X (а также экзотические и минорные митогруппы) в силу нерепрезентативности выборки не попали в поле моего исследования. Если вкратце, то эти наблюдения сводятся к следущим пунктам:

1) наиболее плотное и продуктивное взаимодействие наблюдается между представителями одной сводной гаплогруппы (например, между представителями разных субклад J и T). Возможно этот факт можно объяснить эволюционным механизмом, определающий на генетическом уровне (напомню, митоДНК наследуется строго по материнской линии) привязанность ребенка к матери в раннем возрасте.Кларк-Стюарт к своем исследовании трехсторонних отношений во многих семьях обнаружила, что влияние матери на ребенка носит непосредственный характер, тогда как отец влияет на малыша часто опосредованно – через мать (Clarke-Stewart К.А., 1978). Это влияние впоследстие интерполируется на взаимодействие с представителями близких митогаплогрупп (психогенетические основания этого влияния пока еще научно не выявлены).Поэтому и не удивительно, что в среде своих одногаплогруппников люди находят наиболее надежных единомышленников

2) представители JT и HV являются антиподами по отношению друг к другу — именно между ними наблюдается наиболее антагоничное взаимодействие, часто ведущие к конфликтам. Причины антагонизма предстоит изучить

3) представители митогруппы UK, как правило, характеризуются нейтральным отношением как к JT, так и к HV. Отношения с обоими группами носят сугубо деловой, нейтрально-дружественный характер

Поскольку меня интересовали причины столь явного разделения, то я обратился за консультацией к Валерию Запорожченко, крупнейшему специалисту мирового уровня по мтДНК (он является автором одной из наиболее эфективных филогенетических программ MURKA, имеет самую большую в мире частную коллекцию митогаплотипов и полных геномных сиквенсов, и является соавтором нескольких крупных публикаций по митоДНК). Валерий дал несколько необычный, но если вдуматься, логичный ответ. Суть его ответа состояла в том, что антагонизм между JT и HV можно объяснить «генетической памятью». Дело в том, что гаплогруппа HV проникла в Европу где-то на рубеже мезолита и неолита северным путем. Параллельно с этой гаплогруппой в Европу проник женский род JT, однак маршрут миграции пролегал несколько южнее. Скорее всего, между обеими группами (JT и HV) существовала определенная конкуренция, поскольку и JT, и HV занимали одну нишу (неолитические земледельцы). К стати, этой же исторической интроспекцией объясняется и нейтральность митогруппы UK по отношению к HV и JT. Как общепринято сейчас считать, UK (будучи древнейшей митогруппой Европы) на заре неолитической революции и появления вышеупомянутых неолитичес ких групп, была представлена главным образом среди европейских мезолитических охотников-собирателей. Поскольку они занимали совсем другую нишу, то представителям UK просто нечего было делить с HV и JT.

Самым хорошим примером митоконфликта является длящийся уже 5 лет конфликт между двумя блестящими умами любительской генетики и антропологии — Диенеком Понтикосом (чьей митогруппой является T2) и Давидом «Полако» Веселовским (чья митогруппа определена как H7). Чем не подтверждение конфликтного потенциала взаимодействия митогрупп JT и HV. Это как известный эксперимент с 1 г железного порошка или пудры и 2 г сухого нитрата калия, предварительно растертого в ступке. Стоит их поместить рядом, как начинается бурная реакция с выделением искр, буроватым дымом и сильным разогревом. При этом внешний вид смеси напоминает раскаленную лаву. При взаимодействии нитрата калия с железом образуется феррат калия и газообразный монооксид азота, который, окисляясь на воздухе, дает бурый газ — диоксид азота. Если твердый остаток после окончания реакции поместить в стакан с холодной кипяченой водой, получится красно-фиолетовый раствор феррата калия, который разлагается за несколько минут.))

Каковы практические следствия сих наблюдений? В настоящее время бурно развивается одна из отраслей так называемой конфликтологии, связанной с оценкой совместимости отдельных индивидов в группе. Естественно, наиболее практическое выражение эта отрасль получает в решении практических задач (например, кастинг или отбор персонала). Разумеется, набираемый персонал оценивается главным образом по своим профессиональным знаниям, навыкам,умениям и опыту работу. Но немаловажным фактором является оценка совместимости рекрутов с уже сложившимся коллективом и руководством. Априорная оценка этого фактора затруднительна, и сейчас эта оценка производится главным образом с помощью психологических тестов, на разработку и тестирование которых крупные корпорации и учереждения (например, NASA при отборе команды астронавтов) тратят большие средства. Однако сейчас, на пороге развития психогенетики, эти тесты можно заменить анализом генетически детерминированной совместимости.

Например, предположим, что у нас имеется некая группа рекрутированных специалистов, которые отвечают формальным требованиям приема на работу и имеют соответсвующую компетенцию. Имеется коллектив, в котором скажем присутствуют все три макрогруппы JT, HV и UK. Если бы я был руководителем, то принятые на работу новички направлялись бы к тем или иным группам лиц, исходя из поставленных задач:

1) Если выполнение некоей задачи требует наличие тесной группы единомышленников — то наилучшим вариантом является создание группы лиц, принадлежащих к одной макрогаплогруппе
2) Если группа работает в направлении поиска новых решений и использует в работе методы типа «мозговой штурм» — необходимо поместить оных новобранцев в среду антагонистов (JT к HV, и наоборот)

3) Если принципы работы группы зиждятся сугубо на деловых/формальных отношениях — то руководству следует озаботится тем, чтобы в группе наличиствовало достаточное количество представителей UK, которые будут выступать в качестве буфера между конфликтными JT и HV.

При желании те же самые принципы можно положить в основу «научно-мотивированного» подбора партнера в браке. По-крайней мере, оценка совместимости партнера (вернее, оценка характера совместимости) будет намного более правдоподобней, чем оценка совместимости в современных dating-service, которая основана на примитивных психологических тестах и астрологии.Кстати, единственный коммерческий DNA dating service жестко эксплатирует гаплотипы комплекса гистосовместимоcти. Логика состоит в том, что как было показано в работах ученных, люди обычно выбирают партнеров с максимально противоположенным HLA-гаплотипом.

Different genetic components in the Norwegian population revealed by the analysis of mtDNA & Y chromosome polymorphisms Mitochondrial DNA haplogroups influence AIDS progression.

Natural selection shaped regional mtDNA variation in humans Ruiz-Pesini E, Lapeña AC, Díez-Sánchez C, et al. (September 2000). «Human mtDNA haplogroups associated with high or reduced spermatozoa motility». Am. J. Hum. Genet. 67 (3): 682–96. DOI:10.1086/303040. PMID 10936107.

Mitochondrion: 30 Mitochondrial haplogroup T is associated with coronary artery disease Mitochondrial DNA haplotype ‘T’ carriers are less prone to diabetes « Mathilda’s Anthropology Blog

«Elsewhere it has been reported that membership in haplogroup T may offer some protection against Alexander Belovzheimer Disease (Chagnon et al. 1999; Herrnstadt et al. 2002) and also Parkinson’s Disease (Pyle et al. 2005), but the cautionary words of Pereira et al. suggest that further studies may be necessary before reaching firm conclusions.»

Mitochondrial DNA haplogroups influence AIDS progression.

Natural selection shaped regional mtDNA variation in humans
Ruiz-Pesini E, Lapeña AC, Díez-Sánchez C, et al. (September 2000). «Human mtDNA haplogroups associated with high or reduced spermatozoa motility». Am. J. Hum. Genet. 67 (3): 682–96. DOI:10.1086/303040. PMID 10936107.
Mitochondrion: 30 Mitochondrial haplogroup T is associated with coronary artery disease
Mitochondrial DNA haplotype ‘T’ carriers are less prone to diabetes « Mathilda’s Anthropology Blog
«Elsewhere it has been reported that membership in haplogroup T may offer some protection against

Примерами митохондриальной наследственности является устойчивость к антибиотикам у дрожжевых клеток и мужская половая стерильность (отсутствие мужских гамет) у ряда растений, например, у кукурузы.

У человека (предположительно) – такие пороки развития, как сращение нижних конечностей и расщепление позвоночника.

Центриолярная наследственность

Примеры признаков, передающихся через центриоли, пока не установлены.

В цитоплазме бактерий автономно расположены небольшие кольцевые молекулы ДНК – плазмиды. Выделено три вида плазмид.

    Плазмиды, содержащие F-фактор (фактор фертильности): F+ (мужской пол), F- (женский пол). При конъюгации фактор может переходить от одной бактерии к другой, т.е. меняется пол.

    Плазмиды, содержащие R-фактор (фактор резистентности), определяют устойчивость к антибиотикам. Также могут переходить от одной бактерии к другой.

    Плазмиды-колициногены – кодируют белки, губительно действующие на особей того же вида, не содержащих колициногенов (бактерии-«киллеры»).

Гены ядра и цитоплазмы взаимодействуют между собой. В их основе лежат известные формы взаимодействия неаллельных генов типа эпистаза (например, гены ядра подавляют гены цитоплазмы).

Существует также псевдоцитоплазматическая наследственность, обусловленная наличием в клетках симбионтов – бактерий или вирусов. Так, у дрозофилы есть раса с повышенной чувствительностью к СО 2 . В клетках этой расы имеются вирусы, которые и определяют данное свойство.

Некоторые инфузории-туфельки («киллеры») выделяют вещества, губительно действующие на других особей того же вида. В их клетках обнаружены бактерии.

У мышей существует раса с наследственной предрасположенностью к раку молочной железы. Передача происходит через материнское молоко, содержащее вирусы. Если исключить питание потомства этим молоком, то предрасположенности к раку не будет, и наоборот, если потомство здоровой расы вскармливать этим молоком, то у него возникнет предрасположенность к раку.

Изменчивость

Изменчивость – свойство живых организмов изменять как саму наследственную информацию, полученную от родителей, так и процесс ее реализации в ходе онтогенеза.

Выделяют три вида изменчивости:

    фенотипическая,

    онтогенетическая,

    генотипическая.

Фенотипическая, или модификационная изменчивость – изменение фенотипа в ответ на действие факторов внешней среды. Этот вид изменчивости был выделен еще Ч. Дарвином и назван им «определенная ». Приобретенные в ходе онтогенеза признаки по наследству не передаются. Пределы изменчивости признака называются нормой реакции. Норма реакции передается по наследству. Она может быть широкая и узкая. (Приведите примеры.)

Для эволюционного процесса фенотипическая изменчивость имеет большое значение, т.к. естественный отбор особей в природе идет по фенотипу.

Онтогенетическая изменчивость – закономерное изменение генотипа и фенотипа в ходе онтогенеза.

Изменение фенотипа организма человека в процессе роста, появление вторичных половых признаков – это примеры онтогенетической изменчивости.

Закономерное изменение генотипа в ходе онтогенеза обнаружено недавно. Правда, известно таких примеров немного. Так, белки иммуноглобулины у мышей состоят из двух фракций: V (вариабельная) и С (константная). У эмбрионов мышей кодирующие их гены расположены на довольно большом расстоянии друг от друга:

У взрослых мышей эти гены соединены и работают как один:

Генотипическая изменчивость обусловлена изменением генотипа. Ч. Дарвин этот вид изменчивости называл “неопределенной ”. Это наследуемая изменчивость (передается по наследству).

Генотипическая изменчивость подразделяется на два вида: комбинативную и мутационную .

Комбинативная изменчивость обусловлена перекомбинацией имеющегося генетического материала.

В природе имеется три источника комбинативной изменчивости:

1) независимое расхождение хромосом в мейозе (число комбинаций составляет

2 n , где n – число хромосом в гаплоидном наборе);

2) кроссинговер (обмен гомологичными участками между гомологичными

хромосомами);

3) случайное комбинирование хромосом во время оплодотворения.

Все это приводит к огромному разнообразию генотипов и фенотипов, что, в свою очередь, обеспечивает высокую приспособляемость видов.

В основе мутационной изменчивости лежит перестройка генетического аппарата.