Бытовые электроприборы

Что можно сделать из пружины от машины. Как сделать пружину в домашних условиях

Что можно сделать из пружины от машины. Как сделать пружину в домашних условиях

Пружину, которая будет долго служить и максимально эффективно выполнять свои задачи, можно изготовить не только на производстве. Да, там есть возможность полностью соблюсти весь производственный процесс, все его параметры, правильно выбрать характеристики всех технологических процессов (например, температуру закалки). Однако простую пружину для механизма, который работает в щадящем режиме, можно сделать и своими руками.

Для этого понадобятся следующие материалы:

  • непосредственно пружина и проволока подходящего для задуманного агрегата размера;
  • газовая горелка;
  • слесарный инструмент;
  • тиски;
  • бытовая или термическая печь.

Диаметр

Если диаметр проволоки не более 2 мм, то пружину можно сделать, не применяя термическую обработку. Для этого необходимо таким образом разогнуть проволоку, чтобы она стала абсолютно ровной, а затем с усилием намотать ее на оправку.

Что касается диаметра оправки, то он должен быть немного меньше, чем внутренний диаметр пружины, который вы хотите получить. Это необходимо для компенсации упругой деформации. Скорее всего, придется несколько раз разгибать и свивать пружину, попробовать оправки нескольких размеров, чтобы подобрать нужный диаметр. Между витками пружины сжатия расстояние должно быть немного большим, чем уже у готовой пружины. Два крайних витка должны хорошо и плотно прилегать друг к другу.

Если же диаметр пружины, которую вы хотите использовать как исходный материал больше 2 мм, то, прежде чем начинать с ней работу, ее нужно подвергнуть отжигу. Потому что без этой процедуры такую толстую проволоку невозможно выпрямить и навить.

  • В первую очередь нужно правильно подобрать материал для будущей пружины - это половина успеха. В производстве используются сплавы цветных металлов (65Г, 60ХФА, 60С2А, 70СЗА, Бр. Б2 и т.д.) или специальные стали (углеродистые или легированные). Если же вы решили сделать пружину самостоятельно, самым подходящим материалом для этого станет другая пружина нужного размера (обращать внимание нужно на диаметр проволоки, из которой она изготовлена).
  • Отжиг лучше всего проводить в специальной термической печи. Если же вам не удалось найти такую, то используйте кирпичную или металлическую. Разведите огонь на березовых дровах и в угли положите пружину. Подождите, пока она не раскалится докрасна, и пусть она продолжает лежать в печи до полного ее охлаждения. После такой процедуры отжига проволока станет пригодной для навивания.
  • Выпрямите ее и намотайте на оправку. Делайте это так, как описано выше. При процедуре изготовления пружины витки навивайте вплотную друг к другу.
  • Теперь , чтобы она не потеряла форму. Для этого ее необходимо нагреть до температуры 830-870 градусов и опустить в трансформаторное масло (можно использовать и веретенное). Естественно, что вы не сможете по приборам отслеживать нужную температуру, поэтому определяйте ее визуально по цвету нагретого металла. При температуре 830-900°С металл имеет светло-красный цвет. Если такой оттенок появился - пружина дошла до нужного состояния.
  • После закалки нужно сжать пружину до сжимания витков и оставить ее, не разжимая, на 20-40 часов. Затем сточите на точильном агрегате концы пружины и изделие готово.

Пружины – упругие элементы конструкций, служащие для накопления или рассеяния механической энергии. Они окружают нас со всех сторон — под клавишами клавиатуры компьютера, в подвеске автомобиля и в подъемном механизме дивана. Наиболее распространены витые пружины сжатия. Существует несколько способов сделать их.

Витые пружины сжатия

Упругие элементы могут иметь различные пространственные формы. Исторически первыми пружинами освоенными человеком, были листовые. Их и сегодня можно видеть — это рессоры у большегрузных грузовиков. С развитием технологий люди научились изготавливать более компактные витые пружины, работающие на сжатие. Кроме них, используются и пространственные упругие элементы.

Особенности конструкции

Такие пружины при работе принимают нагрузку вдоль своей оси. В начальном положении между их витками существуют просветы. Приложенная внешняя сила деформирует пружину, длина ее уменьшается до тех пор, пока витки не соприкоснуться. С этого момента пружина представляет собой абсолютно жесткое тело. По мере уменьшения внешнего усилия форма изделия начинается возвращаться к первоначальной вплоть до полного восстановления при исчезновении нагрузки.

Основными характеристиками, описывающими геометрию детали, считают:

  • Диаметр прутка, из которого навита пружина.
  • Число витков.
  • Навивочный шаг.
  • Внешний диаметр детали.

Внешняя форма может отличаться от цилиндрической и представлять собой одну из фигур вращения: конус, бочку (эллипсоид) и другие

Шаг навивки бывает постоянный и переменный. Направление навивки – по часовой стрелке и против нее.

Сечение витков бывает круглым, плоским, квадратным и др.

Концы витков стачиваются до плоской формы.

Область эксплуатации

Шире других используются цилиндрические винтовые пружины постоянного внешнего диаметра и постоянного шага. Они применяются в таких областях, как

  • Машиностроение.
  • Приборостроение.
  • Транспортные средства.
  • Добыча полезных ископаемых промышленность.
  • Бытовая техника.

и в других отраслях.

Требования к пружинам

Для эффективного функционирования работы требуются следующие свойства:

  • высокая прочность;
  • пластичность;
  • упругость;
  • износостойкость.

Чтобы обеспечить проектные значения этих параметров, требуется правильно выбрать материал, точно рассчитать размеры, разработать и соблюсти технологию изготовления.

Государственными стандартами определяются требования к изготовлению пружин. По допустимым отклонениям они относятся к одной из точностных групп:

  • менее 5%;
  • менее 10%;
  • менее 20%.

Строгие требования предъявляются к точности соблюдения геометрии, чистоте поверхности.

Не соответствуют стандарту изделия с царапинами и прочими наружными дефектами, снижающими ресурс изделия и срок его эксплуатации

Требования к материалу

Прочностные параметры и отказоустойчивость изделия во многом определяются материалом, из которого его решили сделать. Металлурги выделяют в классификации сталей специальные рессорно-пружинные стали. Они обладают специфической кристаллической структурой, определяемой как химическим составом, так и проводимой термической обработкой изделий. Высоколегированные сплавы повышенной чистоты и высокого металлургического качества обеспечивают высокую упругость и пластичность, способны сохранять свои физико-механические свойства после многократных деформаций.

Популярность среди конструкторов механизмов приобрели пружинные сплавы 60С2А, 50ХФА и нержавейка 12Х18Н10Т

Особенности технологии

Технологический процесс изготовления упругих элементов зависит от технических требований, предъявляемых к конструкции. Сделать пружину не так просто, как обычную деталь, которая не должна обладать особыми упругими свойствами. Для этого требуется специальное оборудование и оснастка.

Навивка пружин с круглым сечением витка проводится следующими методами:

  • Холодная. Применяется для малых и средних размеров (диаметр проволоки до 8 миллиметров).
  • Горячая. Для больших диаметров.

После навивки упругие элементы подвергают различным видам термообработки. В ее ходе изделие приобретает заданные свойства.

Технология холодной навивки без закалки

Сначала необходимо сделать подготовительные операции. Перед тем, как из проволоки навивать заготовку, ее подвергают процедуре патентирования. Она заключается в нагреве материала до температуры пластичности. Такая операция готовит проволоку к предстоящему изменению формы.

В ходе операции навивки должны быть выдержаны следующие параметры:

  • Внешний диаметр изделия (для некоторых деталей нормируется внутренний диаметр).
  • Число витков.
  • Шаг навивки.
  • Общая длина детали с учетом последующих операций.
  • Соблюдение геометрии концевых витков.

Далее проводится стачивание концевых витков до плоского состояния. Это необходимо сделать для обеспечения качественного упора в другие детали конструкции, предотвращения их разрушения и выскальзывания пружины.

Следующий этап технологического процесса — термообработка. Холодная навивка пружин предусматривает только отпуск при низких температурах. Он позволяет усилить упругость и снять механические напряжения, возникшие в ходе навивки.

Исключительно важно точно соблюдать проектный график термообработки, тщательно контролируя температуру и время выдержки.

После термообработки необходимо сделать испытательные и контрольные операции.

Далее по необходимости могут наноситься защитные покрытия, предотвращающие коррозию. Если они наносились гальваническим методом, изделия подвергаются повторному нагреву для снижения содержания водорода в приповерхностном слое.

Технология холодной навивки с закалкой и отпуском

Первые этапы технологии совпадают с предыдущим процессом. На стадии термообработки начинаются изменения. Она проводится в несколько этапов:

  • Закалка. Заготовку нагревают до заданной температуры, выдерживают от 2 до 3 часов. Далее подвергают скоростному охлаждению, погружая в емкость с минеральным маслом или солевым раствором. В ходе стадии закалки заготовки должны находиться в горизонтальном положении. Это позволит избежать из деформации
  • Отпуск. Заготовку нагревают до 200-300° и выдерживают несколько часов для снятия внутренних напряжений и улучшения упругих свойств.

Далее также проводятся измерительные и контрольные операции. Прошедшие контроль заготовки направляют на пескоструйную обработку для снятия окалины. При необходимости следует сделать также и дробеструйную обработку для повышения прочности поверхностного слоя металла.

Завершает процесс нанесение защитного покрытия.

Технология горячей навивки с закалкой и отпуском

Перед навивкой заготовку нагревают до температуры пластичности одним из следующих методов

  • муфельная печь;
  • газовая горелка;
  • высокочастотный нагрев.

Термическая обработка включает в себя закалку и низкотемпературный отпуск.

Графики термообработки строятся исходя из свойств материала и размеров заготовки.

Чтобы сделать упругий элемент, требуется специализированное оборудование. Это навивочные станки. Сделать деталь можно и на обычном токарном станке, но потребуется его дооборудование специальной оснасткой. Средние и крупные серии изготавливают на полуавтоматических установках, работающих с минимальным вмешательством оператора. Сделать пружину из проволоки можно и вручную. Для этого также потребуется специальная оснастка.

На следующем этапе механической обработки торцы шлифуются на торцешлифовочных станках. При единичном производстве или малых сериях это можно сделать шлифовальном круге.

Термообработка проводится с применением оправок, предотвращающих деформацию изделия, в специализированных печах для закалки и отпуска. Обе операции можно сделать и в универсальной печи.

Для контроля качества используются нагрузочные установки и измерительные комплексы. При единичном производстве измерения можно сделать и универсальным инструментом.

Привет всем мозгочинам ! Хорошо, если нужные для ваших проектов пружины можно прикупить в магазине, но и тогда, сколько нужно их иметь в запасе, и какого размера и типа? К тому же покупные пружины порой подходят, а иногда очень трудно найти нужную, поэтому неплохо бы научиться делать их своими руками и эта статья поможет в этом!

Изготовление пружин хоть и кажется чем-то пугающим, но имея основные подручные инструменты и несложные знания любой самодельщик их может сделать. В этом руководстве я расскажу вам, как сделать некоторые пружины, сначала легким способом, а потом уже с помощью более разнообразного инструмента, но тоже не сложно.

Шаг 1: Типы пружин

На фото представлены несколько типов пружин, которые я покажу как сделать.
Слева - пружина растяжения, далее пружина сжатия, коническая пружина и пружина кручения.

Шаг 2: Основной способ

В первом и самом простом способе создания мозгопружин используются инструменты и материалы, показанные на фото. Используя их можно безопасно изготовить самые разнообразные пружины, и это:
— деревянная палочка диаметром 1.2см
— фортепьянная струна
— плоскогубцы с «опцией» откусывания проволоки
— ножовка
— струбцина
— шуруповерт

Шаг 3: Подготовка деревянной палочки

От деревянной палочки отрезаем часть длиной около 13см, и на одном из торцов делаем прорезь, в которую будет вставляться струна. Хорошо для этого подойдет палочка диаметром 1.2см, так как она отлично входит в патрон шуруповерта. Палочка меньшего мозгодиаметра не подойдет - она не сможет удержать фортепьянную струну.

Шаг 4: Изготовление пружины растяжения

Для наших целей лучше подходит шуруповерт, нежели дрель, потому что можно контролировать скорость вращения. В целях безопасности всегда пользуйтесь плоскогубцами, так как струна может спружинить и поранить вас!

Сначала струбциной крепим шуруповерт к верстаку, затем одной рукой контролируя кнопку включения шуруповерта, а другой удерживая мозгоплоскогубцы , накручиваем витки пружины, столько, сколько вам необходимо. Во время подачи струны плотно натягиваем ее, так пружина получится более качественной.

Шаг 5: Загиб концов

Накрутив пружину, с помощью плоскогубцев загибаем ее концы и получаем готовую пружину растяжения. Экспериментируя подобным образом можно получить пружины различных размеров.

Шаг 6: Пружина сжатия

Для создания пружины этого типа понадобится более длинная палочка, но тоже с прорезью на торце. При ее намотке между витками необходимо держать определенное расстояние, контролируется которое «на глаз», возможно придется немного попрактиковаться для получения качественной пружины, но мозгозанятие это довольно интересное.

Изготовив такую пружину я опробовал ее - надел ее на деревянный стержень, а сверху поместил небольшой блок. Когда я нажал на него и отпустил, блок «пулей» улетел к потолку.

Шаг 7: Коническая пружина

Коническую палочку можно сделать при помощи шуруповерта и шлифовального станка.

Применяя всю ту же мозготехнику , струна заправляется в прорезь конусообразной палочки, а затем происходит намотка. После того, как пружина намотана, обрезаются ее концы, и все, коническая пружина готова.

Чтобы получить качественный конус пружины я намотал две таких, и вторая получилась лучше.

Шаг 8: Пружина кручения

Для создания этой пружины я был вынужден использовать латунный стержень с прорезью, так как деревянный не выдерживал.

Чтобы сделать пружину кручения достаточно накрутить несколько катушек на необходимом вам расстоянии между ними. После этого, немного подогнув концы вы получите готовую пружину кручения.

Шаг 9: И в заключение

На фото показана пружина сжатия, которую я сделал с помощью латунного стержня, и еще несколько других, разных размеров.

Думаю, что данная мозготехника изготовления пружин не сложная, и надеюсь вам она пригодится в ваших самоделках . К тому же, она поможет сэкономить, если вам понадобится много пружин.

Благодарю за внимание и удачи в мозготворчестве !


В настоящее время в магазинах можно без проблем приобрести практически любые необходимые в домашнем хозяйстве изделия. В то же время внимание и творческие усилия самодеятельных конструкторов всё больше направляются на технически сложные объекты: тракторы, вездеходы, легковые автомобили и даже самолёты. Меняется и подход самодельщиков к реализации задуманных проектов; их не пугает необходимость самостоятельного изготовления сложных и точных деталей, к которым к тому же могут предъявляться жёсткие требования по прочности. Одним из таких типичных элементов, присутствующих практически во всех энергоёмких конструкциях, являются винтовые цилиндрические пружины растяжения или сжатия. В связи с этим многим нашим читателям будет интересно и, надеемся, полезно ознакомиться с методикой, разработанной украинским инженером В.В.Виниченко, которая поможет изготовлению ответственных пружин с необходимым качеством и точностью.

Предлагаемый способ навивки винтовых цилиндрических пружин реализуется на токарно-винторезном станке при помощи специального приспособления, состоящего из оправки и копира. В патроне станка крепится оправка с зацепом в виде отверстия в торце фланца для фиксирования начала пружинной проволоки. В резцедержатель устанавливается державка с копиром. Копир - это вал с нарезанной винтовой канавкой переменного шага, который свободно вращается в двух подшипниках. Канавки в начале и в конце копира обеспечивают навивку поджатых витков пружины, а центральная часть - навивку рабочих витков с необходимыми шагом и диаметром.

Державка копира представляет собой конструкцию, сваренную из 40-мм стальной пластины, усиленную ребром из 10-мм полосы, и двух корпусов подшипников. Правый корпус приварен к пластине, а левый крепится болтами М12 (для обеспечения возможности замены копира}. Конкретные чертежи на державку не представлены, поскольку они диктуются типом токарно-винторез-ного станка и размерами навиваемой пружины. Изготовление пружины производится в следующей последовательности. Сначала заготовка - мерный отрезок проволоки отогнутым под 90° концом длиной 4 - 5 d пропускается снизу под копиром и устанавливается в отверстие-зацеп оправки. Затем копир поворачивается вручную до совпадения начала канавки с положением проволоки. Её натяг и постоянный контакт с винтовой канавкой копира обеспечиваются значительным сопротивлением изгибу пружинной стали заготовки. Процесс формирования пружины начинается включением шпинделя станка на минимальных оборотах. Проволока навивается на оправку, а шаг задаётся винтовой канавкой вращающегося в подшипниках копира.
Ниже приводится методика расчёта параметров оправки и копира, обеспечивающих необходимые размеры пружины.

Принятые обозначения при проведении расчётов

Исходные данные {размеры пружины):
п - число рабочих витков;
п. - полное число витков;
t - шаг рабочей части;
Do - внутренний диаметр;
Dcp - средний диаметр.
Параметры копира:
I - длина рабочей части;
DKon - внутренний диаметр канавки;
DHJ1 - диаметр нейтральной линии витков, навиваемых на оправку;
к - ОипЮкоп - поправочный коэффициент;
Т - шаг винтовой линии рабочей части;
Т - шаг винтовой линии заходной и выходной частей.
Оправка:
d -диаметр.
Промежуточные расчётные величины;
L - длина одного витка пружины без учёта шага;
D - средний диаметр витков пружины, навитых на оправку;
X - табличный коэффициент для определения нейтральной линии при изгибе;
B - коэффициент, учитывающий пружинные свойства проволоки;
попр -число рабочих витков пружины, навиваемых на оправку с учётом упругости проволоки;
L1 -длина проволоки, проходящей по рабочей части копира;
L2 - длина проволоки рабочих витков пружины, навитых на оправку;
L3 - длина проволоки, навитой на оправку с учётом поджатых витков;
Lч - длина проволоки пружины согласно чертежу.

Решающее значение при расчёте имеет величина, учитывающая упругость проволоки при изгибе. Она используется при определении диаметра оправки и количества витков поп. Для определения значения этой величины рекомендуется следующая последовательность. В первом приближении изготавливается оправка диаметром D , На токарно-винторезном станке на оправку навивается 5 - 10 витков проволоки с шагом подачи, приблизительно равным шагу пружины. При этом в резцедержатель устанавливается специальный ролик с канавкой. После навивки определяется угол раскручивания всех витков пружины а вычисляется угол, приходящийся на один виток а.1 и в заключение - коэффициент В = а1 /360°/, учитывающий упругость проволоки из заданного материала.

Ниже приведена методика на примере расчёта размеров копира и оправки для навивки пружины из стали 60С2А-В-1-ХН ГОСТ 14963-78 с параметрами: п = 9; nt = 11; t = 14 мм; Do = 42 ± 0,9 мм; d= 8 мм; Dср=50 мм.

При заданных размерах пружины по вышеописанной методике экспериментально установлено увеличение дуги окружности одного витка на 30° после снятия с оправки диаметром 42 мм, что соответствует увеличению длины витка в 1,083 раза (В = 30° 360° = 0,083). Исходя из этого,
Dcp.onp. = (L - ВL/ тт = L (1 - В)/тт = 157x0,917/3,14 = 46 мм,
где L = тт Dcp = 3,14x50 = 157 мм;
d опр. = Dcp.onp.- d = 46 - 8 =38 мм
nопр = 1,083п + 0,25 = 1,083 + 0,25=~10
где 0,25 - добавочная часть витка с учётом допуска числа рабочих витков.
Диаметр нейтральной линии витка на оправке (рис. 2) вычисляется по формуле:
D нл. = d опр + 2d X.
X - определяется по таблице в зависимости от соотношения donp/2d (в нашем случае 38/ (2x8) = 2,375)
Методом интерполяции и вычисляем X = 0,458 и округляем до 0,46.
Тогда Dнл.45,36 мм.
DKOn в первом приближении принимается равным Do = 42 мм.
Тогда коэффициент к = Dил /Dкоn -45,36/42 = 1,08.
Длина рабочей части копира: = t-n = 14x9 = 126 мм.

Расчётный шаг рабочей части копира:
Т = |/(попр к) = 126/(10x1,08) = 11,67 мм.
Полученный расчётный шаг рабочей части копира округляется до ближайшего шага подачи токарно-винторезного станка (Т = 12 мм), чтобы обеспечить возможность нарезки винтовой канавки. Для сохранения заданного шага пружины внутренний диаметр канавки копира пересчитывается из условия выбранного шага копира:
k = l/(Tnonp) = 126/(12x10) = 1,05.
Тогда DКОП. = Dн л/н = 45,36/1,05 =43,2 мм.

Число витков заходной и выходной частей копира выбрано равным 1,5. Шаг канавки этих частей определяется по экспериментально установленной формуле:
Tn = 0,875d = 0,875x8 = 7 мм, и принимается равным ближайшему шагу подачи на станке (7 мм).
Заходная и выходная части привариваются к оси копира или крепятся двумя штифтами диаметром 8 мм и двумя винтами М8. Сопряжение канавок заходной и выходной частей копира с канавкой рабочей части обрабатывается вручную соответствующим напильником, обеспечивая плавность перехода. Материал копира - сталь 45, термообработка - закалка до твёрдости HRC38...42.
Для проверки расчётов определяется длина проволоки:

L1= DKon тт 1/Т = 43,2x3,14x126/12 = 1425 мм и сравнивается с длиной проволоки:
L2 = D нл. тт п опр. = 45,36x3,14x10 =1425 мм.
Также сравнивается длина проволоки:
L3 = D нл. тт (п опр. + 2x1,083) =45,36x3,14(10+2x1,083) = 1733 мм

с длиной проволоки:
Lч = (Do +2d X) тт n = (42 + 2x8x0,46) хЗ,14х11 = 1705 мм.
При правильном расчёте погрешность Лямда не должна превышать 2,5%. В нашем случае:
Лямда= (L3 - Lч) 100%/L4 = (1733 - 1705)100/1705 = 1,6%.

При создании различных устройств очень полезно иметь под рукой пружины. Само собой возникает вопрос: сколько, какого типа и размера могут понадобиться в следующий раз и как сделать пружину своими руками?

При этом иногда возникает ситуация, когда сложно найти пружину, которая идеально соответствует твоим требованиям. Так почему бы не сделать свою собственную?

Создание пружин может показаться пугающим, но при помощи базового инструмента и с простой инструкцией каждый из вас сможет создать ее.

В этой статье я покажу вам, как сделать некоторые из них, сначала самые простые, а затем я перейду к некоторым «продвинутым» инструментам, но это не добавит процессу создания сложности.

Шаг 1: Типы

Вот несколько из множества типов пружин, которые мы научимся делать. Слева направо:

  • Натяжная
  • Сжимающая
  • Коническая
  • Торсионная

Шаг 2: Начнём работу при помощи базовых инструментов

Вы сможете начать создавать множество разных типов при помощи инструментов, обозначенных в списке:

  • штырь диаметром 1.4 см
  • струна для пианино или проволока
  • плоскогубцы с кусачками
  • зажимы
  • беспроводная дрель

Шаг 3: Обрежем штырь

Сначала возьмите деревянный штырь и обрежьте его до длины примерно 12 см. Затем прорежьте в одном из его концов паз, он будет предназначаться для струны. Штырь диаметром примерно 1.4 см подойдёт лучше всего потому, что он хорошо крепится в патроне дрели.

Шаг 4: Создание натяжной пружины

Беспроводные дрели хороши тем, что можно настраивать скорость их вращения. Для безопасности всегда пользуйтесь плоскогубцами — если провод соскочит, то он может порезать вам руки.

Закрепите дрель на столе при помощи зажимов. Одна рука лежит на кнопке включения дрели, а вторая зажимает плоскогубцы. Проворачивайте дрель столько, сколько вам нужно, пока не добьётесь необходимого количества витков. Во время намотки удерживайте шнур под напряжением, и пружина будет поворачиваться лучше.

Шаг 5: Сгибание струны

После намотки, я согнул плоскогубцами оставшиеся кончики и получил натяжную пружину. Экспериментируя, вы можете добиться различных размеров петелек.

Шаг 6: Сжимающая



Для нее потребуется более длинный штырь, в котором также будет вырезан паз. Во время намотки, отмеряйте расстояние между витками на глаз. Это потребует от вас практики, но занятие на самом деле очень занимательное.

Когда пружина была готова, я провел тест (см. последнюю фотографию). Я поместил ее на штырь, придавил её сверху небольшим деревянным бруском и быстро отпустил — брусок выстрелил до потолка.

Шаг 7: Коническая



Коническая делается при помощи дрели и ленточной шлифовальной машины.

Используя ту же технику намотки, я посадил струну в пазик на штыре. Когда пружина была полностью намотана, я обрезал её концы, и коническая пружина была готова. Ее я сделал дважды, и второй вариант вышел более хорошим.

Шаг 8: Торсионная

Для изготовления торсионной я использовал латунный стержень, так как деревянный штырь не выдерживал нагрузки и ломался. Чтобы создать пружину, сделайте несколько витков и оставьте прямой участок струны с обоих концов. Изогнув концы струны, вы создадите хорошую торсионную пружину.

Шаг 9: Заключение


На фотографиях вы видите сжимающую и набор различных пружин, которые я сделал в домашних условиях.

Я надеюсь, изготовление окажется для вас простым занятием и поможет вам сделать множество интересных проектов. Если вы используете их постоянно, то это также сэкономит вам деньги.