Альтернативные источники энергии

Строительные конструкции. Понятия о конструкциях зданий Строительные конструкции по функциональному назначению подразделяются на

Строительные конструкции. Понятия о конструкциях зданий Строительные конструкции по функциональному назначению подразделяются на

Строительной конструкцией называют укрупненный строительный элемент здания, сооружения или моста, изготовленный из строительных материалов и изделий.

Классифицируются строительные конструкции по назначению и строительному материалу.

По назначению бывают:

1. Несущие – те конструкции зданий и сооружений, которые выдерживают силовые нагрузки. Они обеспечивают их устойчивость и прочность, а также позволяют безопасно эксплуатировать постройку. К ним относят: несущие стены, колоны, фундаменты, перекрытия и покрытия и др.

2. Ограждающие – конструкции, которые ограничивают объем здания и разделяют его на отдельные функциональные помещения. Делят на: наружные (защищают от атмосферных воздействий) и внутренние (для обеспечения звукоизоляции и деления внутреннего пространства). К ограждающим конструкциям относят перегородки, самонесущие стены, заполнения проемов и т.д.

По материалу строительные конструкции делят на:

Бетонные и железобетонные;

Металлоконструкции;

Деревянные;

Каменные и армокаменные;

Пластмассовые;

Комплексные (комбинируют несколько видов материалов).

Основные требования, которые предъявляют к строительным конструкциям:

1. Надежность. Это понятие включает в себя три составляющие: прочность, жесткость и устойчивость.

Прочность – это способность конструкции воспринимать все нагрузки без разрушений;

Жесткость – свойство, которое позволяет строительной конструкции под действием нагрузок деформироваться в допустимых пределах;

Устойчивость – способность конструкции сохранять неизменное положение в пространстве под действием нагрузок.

2. Удобство эксплуатации – это возможность использовать здания и сооружения по своему назначению. Нужно, чтобы конструкции были запроектированы таким образом, чтобы имелась возможность легко их осматривать, ремонтировать, реконструировать и усилить.

3. Экономичность . При проектировании необходимо сделать так, чтобы не было перерасхода строительных материалов и стараться обеспечить минимальные трудовые затраты при монтаже конструкции.

9.2. Железобетонные конструкции и изделия

Железобетонные конструкции и изделия , элементы зданий и сооружений, изготовляемые из железобетона, и сочетания этих элементов.

Высокие технико-экономические показатели железобетонных конструкций, возможность сравнительно легко придавать им требуемую форму и размеры при соблюдении заданной прочности, обусловили их широкое применение практически во всех отраслях строительства. Современные железобетонные конструкции (ЖБК) классифицируются по нескольким признакам: по способу выполнения (монолитные, сборные, сборно-монолитные), виду бетона, применяемого для их изготовления (из тяжёлых, лёгких, ячеистых, жаростойких и др. бетонов), виду напряжённого состояния (обычные и предварительно напряжённые).

Монолитные железобетонные конструкции , выполняемые непосредственно на строительных площадках, обычно применяются в зданиях и сооружениях, трудно поддающихся членению, при нестандартности и малой повторяемости элементов и при особенно больших нагрузках (фундаменты, каркасы и перекрытия многоэтажных промышленных зданий, гидротехнические, мелиоративные, транспортные и др. сооружения).

В ряде случаев они целесообразны при выполнении работ индустриальными методами с использованием инвентарных опалубок - скользящей, переставной (башни, градирни, силосы, дымовые трубы, многоэтажные здания) и передвижной (некоторые тонкостенные оболочки покрытий).

Возведение монолитных железобетонных конструкций технически хорошо отработано. Значительные достижения имеются также в применении метода предварительного напряжения при производстве монолитных конструкций. В монолитном железобетоне выполнено большое количество уникальных сооружений (телевизионные башни, промышленные трубы большой высоты, реакторы атомных электростанций и др.). В современной строительной практике ряда зарубежных стран (США, Великобритании, Франции и др.) монолитные железобетонные конструкции получили широкое распространение, что объясняется главным образом отсутствием в этих странах государственной системы унификации параметров и типизации конструкций зданий и сооружений. В СССР монолитные конструкции преобладали в строительстве до 30-х гг.

Внедрение более индустриальных сборных конструкций в те годы сдерживалось из-за недостаточного уровня механизации строительства, отсутствия специального оборудования для их массового изготовления, а также монтажных кранов большой производительности. Удельный вес монолитных железобетонных конструкций в общем объёме производства железобетона в СССР составляет примерно 35% (1970).

Сборные железобетонные конструкции и изделия - основной вид конструкций и изделий, применяемых в различных отраслях строительства: жилищно-гражданском, промышленном, сельскохозяйственном и др.

Сборные конструкции имеют существенные преимущества перед монолитными, они создают широкие возможности для индустриализации строительства. Применение крупноразмерных железобетонных элементов позволяет основную часть работ по возведению зданий и сооружений перенести со строительной площадки на завод с высокоорганизованным технологическим процессом производства. Это значительно сокращает сроки строительства, обеспечивает более высокое качество изделий при наименьшей их стоимости и затратах труда; использование сборных железобетонных конструкций позволяет широко применять новые эффективные материалы (лёгкие и ячеистые бетоны, пластмассы и др.), уменьшает расход лесоматериалов и стали, необходимых в др. отраслях народного хозяйства. Сборные конструкции и изделия должны быть технологичны и транспортабельны, они особенно выгодны при минимальном количестве типоразмеров элементов, повторяющихся много раз.

С ростом производства и применения в строительстве сборного железобетона совершенствовалась технология его изготовления. Была осуществлена также унификация основных параметров зданий и сооружений различного назначения, на основе, которой разработаны и внедрены типовые конструкции и изделия для них.

В зависимости от назначения в строительстве жилых, общественных, промышленных и сельскохозяйственных зданий и сооружений различают следующие наиболее распространённые сборные ЖБК:

Для фундаментов и подземных частей зданий и сооружений (фундаментные блоки и плиты, панели и блоки стен подвалов);

Для каркасов зданий (колонны, ригели, прогоны, подкрановые балки, стропильные и подстропильные балки, фермы);

Для наружных и внутренних стен (стеновые и перегородочные панели и блоки);

Для междуэтажных перекрытий и покрытий зданий (панели, плиты и настилы); для лестниц (лестничные марши и площадки);

Для санитарно-технических устройств (отопительные панели, блоки вентиляционные и мусоропроводов, санитарно-технические кабины).

Сборные ЖБК изготовляют преимущественно на механизированных предприятиях и частично на оборудованных полигонах. Технологический процесс производства железобетонных изделий складывается из ряда последовательно выполняемых операций: приготовления бетонной смеси, изготовления арматуры (арматурных каркасов, сеток, гнутых стержней и т. д.), армирования изделий, формования изделий (укладка бетонной смеси и её уплотнение), тепловлажностной обработки, обеспечивающей необходимую прочность бетона, отделки лицевой поверхности изделий.

В современной технологии сборного железобетона можно выделить 3 основных способа организации производственного процесса: агрегатно-поточный способ изготовления изделий в перемещаемых формах; конвейерный способ производства; стендовый способ в неперемещаемых (стационарных) формах.

При агрегатно-поточном способе все технологические операции (очистка и смазка форм, армирование, формование, твердение, распалубка) осуществляются на специализированных постах, оборудованных машинами и установками, образующими поточную технологическую линию. Формы с изделиями последовательно перемещаются по технологической линии от поста к посту с произвольным интервалом времени, зависящим от длительности операции на данном посту, которая может колебаться от нескольких минут (например, смазка форм), до нескольких часов (твердение изделий в пропарочных камерах). Этот способ выгодно использовать на заводах средней мощности, в особенности при выпуске конструкций и изделий широкой номенклатуры.

Конвейерный способ применяют на заводах большой мощности при выпуске однотипных изделий ограниченной номенклатуры. При этом способе технологическая линия работает по принципу пульсирующего конвейера, т. е. формы с изделиями перемещаются от поста к посту через строго определённое время, необходимое для выполнения самой длительной операции.

Разновидностью этой технологии является способ вибропроката , применяемый для изготовления плоских и ребристых плит; в этом случае все технологические операции выполняются на одной движущейся стальной ленте. При стендовом способе изделия в процессе их изготовления и до затвердевания бетона остаются на месте (в стационарной форме), в то время как технологическое оборудование для выполнения отдельных операций перемещается от одной формы к другой. Этот способ применяют при изготовлении изделий большого размера (ферм, балок и т. п.). Для формования изделий сложной конфигурации (лестничных маршей, ребристых плит и т. п.) используют матрицы - железобетонные или стальные формы, воспроизводящие отпечаток ребристой поверхности изделия. При кассетном способе, являющемся разновидностью стендового, изделия изготовляют в вертикальных формах - кассетах, представляющих собой ряд отсеков, образованных стальными стенками. На кассетной установке происходят формование изделий и их твердение. Кассетная установка имеет устройства для обогрева изделий паром или электрическим током, что значительно ускоряет твердение бетона. Кассетный способ обычно применяют для массового производства тонкостенных изделий.

Готовые изделия должны отвечать требованиям действующих стандартов или технических условий. Поверхности изделий обычно выполняют с такой степенью заводской готовности, чтобы на месте строительства не требовалось их дополнительной отделки.

При монтаже сборные элементы зданий и сооружений соединяются друг с другом омоноличиванием или сваркой закладных деталей, рассчитанных на восприятие определенных силовых воздействий. Большое внимание уделяется снижению металлоемкости сварных соединений и их унификации. Наибольшее распространение сборные конструкции и изделия получили в жилищно-гражданском строительстве, где крупноэлементное домостроение (крупнопанельное, крупноблочное, объёмное) рассматривается как наиболее перспективное. Из сборного железобетона организовано также массовое производство изделий для инженерных сооружений (т. н. специального железобетона): пролётные строения мостов, опоры, сваи, водопропускные трубы, лотки, блоки и тюбинги для обделки туннелей, плиты покрытий дорог и аэродромов, шпалы, опоры контактной сети и линий электропередачи, элементы ограждений, напорные и безнапорные трубы и др.

Значительная часть этих изделий выполняется из предварительно напряжённого железобетона стендовым или поточно-агрегатным способом. Для формования и уплотнения бетона применяются весьма эффективные методы: вибропрессование (напорные трубы), центрифугирование (трубы, опоры), виброштампование (сваи, лотки).

Для развития сборного железобетона характерна тенденция к дальнейшему укрупнению изделий и повышению степени их заводской готовности. Так, например, для покрытий зданий используются многослойные панели, поступающие на строительство с утеплителем и слоем гидроизоляции; блоки размером 3х18 м и 3х24 м, сочетающие в себе функции несущей и ограждающей конструкций. Разработаны и успешно применяются совмещенные кровельные плиты из лёгкого и ячеистого бетонов. В многоэтажных зданиях используются предварительно напряжённые железобетонные колонны на высоту нескольких этажей. Для стен жилых зданий изготовляются панели размерами на одну-две комнаты с разнообразной внешней отделкой, снабженные оконными или дверными (балконными) блоками. Значительные перспективы для дальнейшей индустриализации жилищного строительства имеет способ возведения зданий из объёмных блоков. Такие блоки на одну-две комнаты или на квартиру изготовляются на заводе с полной внутренней отделкой и оборудованием; сборка домов из этих элементов занимает всего несколько дней.

Сборно-монолитные железобетонные конструкции представляют собой такое сочетание сборных элементов (железобетонных колонн, ригелей, плит и т. д.) с монолитным бетоном, при котором обеспечивается надёжная совместно работа всех составных частей.

Эти конструкции применяются главным образом в перекрытиях многоэтажных зданий, в мостах и путепроводах, при возведении некоторых видов оболочек и т. д.

Они менее индустриальны (в отношении возведения и монтажа), чем сборные. Их применение особенно целесообразно при больших динамических (в т. ч. сейсмических) нагрузках, а также при необходимости членения крупноразмерных конструкций на составные элементы из-за условий транспортировки и монтажа. Основное достоинство сборно-монолитных конструкций - меньший (по сравнению со сборными конструкциями) расход стали и высокая пространственная жёсткость.

Наибольшая часть ЖБК и ЖБИ выполняется из тяжёлого бетона со средней плотностью 2400 кг/м 3 . Однако доля изделий из конструктивно-теплоизоляционного и конструктивного лёгкого бетонов на пористых заполнителях, а также из ячеистого бетона всех видов непрерывно возрастает. Такие изделия используются преимущественно для ограждающих конструкций (стены, покрытия) жилых и производственных зданий.

Весьма перспективны несущие конструкции из высокопрочного тяжёлого бетона классов С30/35 и С32/40 и лёгкого бетона классов С20/25 и С25/30. Существенный экономический эффект достигается в результате применения конструкций из жаростойкого бетона (вместо штучных огнеупоров) для тепловых агрегатов металлургической, нефтеперерабатывающей и др. отраслей промышленности; для ряда изделий (например, напорных труб) перспективно применение напрягающего бетона.

Железобетонные конструкции и изделия выполняются в основном с гибкой арматурой в виде отдельных стержней, сварных сеток и плоских каркасов. Для изготовления ненапрягаемой арматуры целесообразно использование контактной сварки, обеспечивающей высокую степень индустриализации арматурных работ. Конструкции с несущей (жёсткой) арматурой применяют сравнительно редко и главным образом в монолитном железобетоне при бетонировании в подвесной опалубке. В изгибаемых элементах продольная рабочая арматура устанавливается в соответствии с эпюрой максимальных изгибающих моментов; в колоннах продольная арматура воспринимает преимущественно сжимающие усилия и располагается по периметру сечения. Кроме продольной арматуры, в ЖБК устанавливается распределительная, монтажная и поперечная арматура (хомуты, отгибы), а в некоторых случаях предусматривается т. н. косвенное армирование в виде сварных сеток и спиралей.

Все эти виды арматуры соединяются между собой и обеспечивают создание арматурного каркаса, пространственно неизменяемого в процессе бетонирования. Для напрягаемой арматуры предварительно напряжённых ЖБК используют высокопрочные стержневую арматуру и проволоку, а также пряди и канаты из неё. При изготовлении сборных конструкций применяется в основном метод натяжения арматуры на упоры стендов или форм; для монолитных и сборно-монолитных конструкций - метод натяжения арматуры на бетон самой конструкции.

Широкие формообразующие и технические возможности железобетонных конструкций оказали огромное влияние на мировую архитектуру 20 века. На основе железобетонных конструкций сложились новые масштабы, архитектоника и пространственная организация зданий и сооружений. Прямолинейные каркасные конструкции придают зданиям строгий геометризм форм и мерный ритм членений, чёткость структуры. Горизонтальные плиты перекрытий покоятся на тонких опорах, лёгкая стена, будучи лишена несущей функции, нередко превращается в стеклянный экран-завесу. Равномерное распределение статических усилий создаёт тектоническую равнозначность элементов постройки. Большой пластической и пространственной выразительностью обладают криволинейные конструкции (особенно тонкостенные оболочки различных, иногда причудливых очертаний), с их сложной тектоникой форм (порой приближающихся к скульптурным) и непрерывно сменяющимся ритмом элементов. Криволинейные конструкции позволяют перекрывать без промежуточных опор огромные зальные помещения и создавать необычные по форме объёмно-пространственные композиции. Некоторые современные железобетонные конструкции (например, решётчатые) обладают орнаментально-декоративными качествами, формирующими облик фасадов и покрытий. Пластически осмысленные современные железобетонные конструкции придают эстетическую выразительность не только жилым и гражданским зданиям, но и инженерным и промышленным сооружениям (мостам, эстакадам, плотинам, градирням и др.).

Несущие конструкции.

Железобетонные колонны:

Рис. 9.1. Колонна двухветвевая среднего ряда

Рис. 9.2. Колонна двухветвевая крайнего ряда

Рис. 9.3. . Колонны безригельного каркаса

Рис. 9.4. Колонна одноэтажных промышленных зданий

а) Колонна среднего ряда с двумя консолями

Рис. 9.5. Одноветвевая колонная среднего ряда

б) Колонна крайнего ряда с одной консолью

Рис. 9.6. Одноветвевая колонна крайнего ряда

Рис. 9.7. Колонна среднего ряда одноветвевая для многоэтажных зданий

Рис. 9.8. Одноветвевая колонна административно-бытовых зданий

Рис. 9.9. Одноветвевая колонна складских зданий

Рис. 9.10. Одноветвевые колонны многоэтажных административно-бытовых зданий

Рис. 9.11. Железобетонный ригель с полками

Рис. 9.12. Железобетонный ригель связевый

Ригели предназначены для каркасов многоэтажных зданий, производственного, административного и бытового назначения, промышленных предприятий, жилых домов и торгово-развлекательных комплексов.

Морозостойкость не ниже F50.

Рис. 9.13. Балки железобетонные таврового сечения

Рис. 9.14. Балки железобетонные таврового сечения

Балки предназначены для каркасов многоэтажных зданий, производственных, административных и бытовых зданий промышленных предприятий, жилых домов и торгово-развлекательных комплексов.

Морозостойкость не ниже F50.

Строительные конструкции очень разнообразны по своему на­значению и применению. Тем не менее, их можно объединить по некоторым признакам общности тех или иных свойств, т.е. про­классифицировать, уточнив при этом некоторые понятия. Воз­можны различные подходы к классификации конструкций.

Имея в качестве основной конечной цели учебника расчет кон­струкций, целесообразнее всего проклассифицировать их по сле­дующим признакам:

I) по геометрическому признаку конструкции принято разде­лять на массивы, брусья, плиты, оболочки (рис. l.l) и стержне­вые системы (рис. 1.3):

массив - конструкция, в которой все размеры одного поряд­ка, например у фундамента размеры могут быть такими: а = 1,8 м; b= 1,2 м; h= 1,5 м. Размеры могут быть и другими, но порядок их один - метры;

брус - элемент, в котором два размера во много раз меньше третьего, т.е. они разного порядка: b « l, h « l. Например, у же­лезобетонной балки они могут быть такими: b = 20см, h = 40 см, а l = 600 см, т.е. они могут отличаться друг от друга на целый по­рядок (в 10 и более раз).

Брус с ломаной осью принято называть простейшей рамой, а с криволинейной осью - аркой (рис. 1.2, а, б)


плита - элемент, в котором один размер во много раз мень­ше двух других: h « a, h « l. В качестве примера можно приве­сти ребристую железобетонную плиту (точнее, поле плиты), у ко­торой толщина собственно плиты h может быть 3-4 см, а длина и ширина порядка 150 см. Плита является частным случаем более общего понятия - оболочки, которая в отличие от плиты имеет криволинейное очертание (рис. 1.1, г). Рассмотрение оболочек вы­ходит за рамки нашего курса;

стержневые системы представляют собой геометрически не­изменяемые системы стержней, соединенных между собой шарнирно или жестко. К ним относятся строительные фермы (балоч­ные или консольные) (рис. 1.3).

Размеры во всех примерах приведены в качестве ориентира и не исключают их многообразия. Есть случаи, когда трудно отнес­ти конструкцию к тому или иному виду по этому признаку. В рам­ках данного учебника все конструкции вполне вписываются вприведенную классификацию;

2) с точки зрения статики конструкции делятся на стати­чески определимые и статически неопределимые. К. первым от­носятся системы (конструкции), усилия или напряжения в ко­торых могут быть определены только из уравнений статики (уравнений равновесия), ко вторым - такие, для которых од­них уравнений статики недостаточно. В настоящем учебнике преимущественно рассматриваются статически определимые конструкции;

3) по используемым материалам конструкции делятся на сталь­ные, деревянные, железобетонные, бетонные, каменные (кирпичные);

4) с точки зрения напряженно-деформированного состояния, т.е. возникающих в конструкциях внутренних усилий, напряже­ний и деформаций под действием внешней нагрузки, условно можно поделить их на три группы: простейшие, простые и слож­ные (табл. 1.1). Такое разделение не является общепринятым, но позволяет привести в систему характеристики видов напряжен­но-деформированных состояний конструкций, которые широко распространены в строительной практике и будут рассмотрены в учебнике. В представленной таблице трудно отразить все тон­кости и особенности указанных состояний, но она дает возмож­ность сравнить и оценить их в целом. Подробнее о стадиях напряженно деформированных состояний будет сказано в соответ­ствующих главах.

Строительные конструкции, несущие и ограждающие конструкции зданий и сооружений.

Классификация и области применения. Разделение строительных конструкций по функциональному назначению на несущие и ограждающие в значительной мере условно. Если такие конструкции, как арки, фермы или рамы, являются только несущими, то панели стен и покрытий, оболочки, своды, складки и т.п. обычно совмещают ограждающие и несущие функции, что отвечает одной из важнейших тенденций развития современных строительных конструкций.В зависимости от расчётной схемы несущие строительные конструкции подразделяют на плоские (например, балки, фермы, рамы) и пространственные (оболочки, своды, купола и т.п.). Пространственные конструкции характеризуются более выгодным (по сравнению с плоскими) распределением усилий и, соответственно, меньшим расходом материалов; однако их изготовление и монтаж во многих случаях оказываются весьма трудоёмкими. Новые типы пространственных конструкций, например структурные конструкции из прокатных профилей на болтовых соединениях, отличаются как экономичностью, так и сравнительной простотой изготовления и монтажа. По виду материала различают следующие основные типы строительных конструкций: бетонные и железобетонные.

Бетонные и железобетонные конструкции - наиболее распространённые (как по объёму, так и по областям применения). Специальные виды бетона и железобетона используют при строительстве сооружений, эксплуатируемых при высоких и низких температурах или в условиях химически агрессивных сред (тепловые агрегаты, здания и сооружения чёрной и цветной металлургии, химической промышленности и др.). Уменьшение массы, снижение стоимости и расхода материалов в железобетонных конструкциях возможны на основе использования высокопрочных бетонов и арматуры, роста производства предварительно напряженных конструкций, расширения областей применения лёгких и ячеистых бетонов.

Стальные конструкции применяются главным образом для каркасов большепролётных зданий и сооружений, для цехов с тяжёлым крановым оборудованием, домен, резервуаров большой ёмкости, мостов, сооружений башенного типа и др. Области применения стальных и железобетонных конструкций в ряде случаев совпадают. Существенное преимущество стальных конструкций (по сравнению с железобетонными) - их меньшая масса.

Требования, предъявляемые к строительным конструкциям. С точки зрения эксплуатационных требований С. К. должны отвечать своему назначению, быть огнестойкими и коррозиеустойчивыми, безопасными, удобными и экономичными в эксплуатации.

Расчёт С. К. Строительные конструкции должны быть рассчитаны на прочность, устойчивость и колебания. При этом учитываются силовые воздействия, которым конструкции подвергаются при эксплуатации (внешние нагрузки, собственный вес), влияние температуры, усадки, смещения опор и т.д. а также усилия, возникающие при транспортировке и монтаже строительных конструкций.

Фундаменты зданий и сооружений — части зданий и сооружений (преимущественно подземные), которые служат для передачи нагрузок от зданий (сооружений) на естественное или искусственное основание. Стена здания — основная ограждающая конструкция здания. Наряду с ограждающими функциями стены одновременно в той или иной степени выполняют и несущие функции (служат опорами для восприятия вертикальных и горизонтальных нагрузок.

Каркас (франц. carcasse, от итал. carcassa) в технике — остов (скелет) какого-либо изделия, конструктивного элемента, целого здания или сооружения, состоящий из отдельных скрепленных между собой стержней. Каркас выполняется из дерева, металла, железобетона и др. материалов. Он определяет собой прочность, устойчивость, долговечность, форму изделия или сооружения. Прочность и устойчивость обеспечиваются жёстким скреплением стержней в узлах сопряжения или шарнирного соединения и специальными элементами жёсткости, которые придают изделию или сооружению геометрически неизменяемую форму. Увеличение жёсткости каркаса нередко достигается включением в работу оболочки, обшивки или стенок изделия или сооружения.

Перекрытия — горизонтальные несущие и ограждающие конструкции. Они воспринимают вертикальные и горизонтальные силовые воздействия и передают их на несущие стены или каркас. Перекрытия обеспечивают тепло- и звукоизоляцию помещений.

Полы в жилых и общественных зданиях должны удовлетворять требованиям прочности и сопротивляемости износу, достаточной эластичности и бесшумности, удобства уборки. Конструкция пола зависит от назначения и характера помещений, где он устраивается.

Крыша — наружная несущая и ограждающая конструкция здания, которая воспринимает вертикальные (в том числе снеговые) и горизонтальные нагрузки и воздействия. (Ветер — нагрузка.

Лестницы в зданиях служат для вертикальной связи помещений, находящихся на разных уровнях. Расположение, число лестниц в здании и их размеры зависят от принятого архитектурно-планировочного решения, этажности, интенсивности людского потока, а также требований пожарной безопасности.

Окна устраиваются для освещения и проветривания (вентиляции) помещений и состоят из оконных проемов, рам или коробок и заполнения проемов, называемого оконными переплетами.

Вопрос №12. Поведение зданий и сооружений в условиях пожара, их огнестойкость и пожарная опасность.

Нагрузки и воздействия которым, подвергается здание в нормальных условиях эксплуатации, учитывают при расчете прочности строительных конструкций. Однако при пожарах возникают дополнительные нагрузки и воздействия, которые во многих случаях приводят к разрушению отдельных конструкций и зданий в целом. К неблагоприятным факторам относится: высокая температура, давление газов и продуктов горения, динамические нагрузки от падающих обломков обрушившихся элементов здания и пролитой воды, резкие колебания температур. Способность конструкции сохранять свои функции (несущие, ограждающие) в условиях пожара сопротивляться воздействию огня называется огнестойкостью строительной конструкции.

Строительные конструкции характеризуются огнестойкостью и пожарной опасностью.

Показателем огнестойкости является предел огнестойкости, пожарную опасность конструкции характеризует класс ее пожарной опасности.

Строительные конструкции зданий, сооружений и строений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости.

— ненормируемый;- не менее 15 мин;- не менее 30 мин;-не менее 45 мин;- не менее 60 мин;-не менее 90 мин;- не менее 120 мин;- не менее 180 мин;- не менее 360 мин.

Предел огнестойкости строительных конструкций устанавливается по времени (в минутах) наступления одного или последовательно нескольких, нормируемых для данной конструкции, признаков предельных состояний:потери несущей способности (R);потери целостности (Е);потери теплоизолирующей способности (I.

Пределы огнестойкости строительных конструкций и их условные обозначения устанавливают по ГОСТ 30247. При этом предел огнестойкости окон устанавливается только по времени наступления потери целостности (Е.

По пожарной опасности строительные конструкции подразделяются на четыре класса: КО (непожароопасные); К1 (малопожароопасные); К2 (умереннопожароопасные);КЗ (пожароопасные.

Вопрос№ 13. Металлические конструкции и их поведение в условиях пожара, способы повышения огнестойкости конструкций.

Хотя металлические конструкции выполнены из несгораемого материала, фактический предел их огнестойкости в среднем составляет 15 минут. Это объясняется достаточно быстрым снижением прочностных и деформативных характеристик металла при повышенных температурах во время пожара. Интенсивность нагрева МК (металлической конструкции) зависит от ряда факторов, к которым относятся характер нагрева конструкций и способы их защиты. В случае кратковременного действия температуры при реальном пожаре, после воспламенения горючих материалов металл подвергается нагреву более медленно и менее интенсивно, чем нагрев окружающей среды. При действии «стандартного» режима пожара температура окружающей среды не перестает повышаться и тепловая инерция металла, обуславливающая некоторую задержку нагрева, наблюдается только в течение первых минут пожара. Затем температура металла приближается к температуре нагревающей среды. Защита металлического элемента и эффективность этой защиты также влияют на нагрев металла.

При действии на балку высоких температур при пожаре сечение конструкции быстро прогревается до одинаковой температуры. При этом снижается предел текучести и модуль упругости. Обрушение прокатных балок наблюдается в сечении, где действует максимальный изгибающий момент.

Воздействие температуры пожара на ферму приводит к исчерпанию несущей способности ее элементов и узловых соединений этих элементов. Потеря несущей способности в результате снижения прочности металла характерна для растянутых и сжатых элементов поясов и решетки конструкции.

Исчерпание несущей способности стальных колонн, находящихся в условиях пожара, может наступить в результате потери: прочности стержнем конструкции; прочности или устойчивости элементами соединительной решетки, а также узлов крепления этих элементов к ветвям колонны; устойчивости отдельными ветвями на участках между узлами соединительной решетки; общей устойчивости колонны.

Поведение в условиях пожара арок и рам зависит от статической схемы работы конструкции, а также конструкции сечения этих элементов.

Способы повышения огнестойкости.

· облицовка из негорючих материалов(обетонирование, облицовка из кирпича, теплоизолюционных плит, гипсокартонными листами, штукатурка.

· огнезащитные покрытия (невспучивающиеся и вспучивающиеся покрытия.

· подвесные потолки (между конструкцией и потолком создается воздушный зазор, который повышает ее предел огнестойкости.

Предельное состояние металлической конструкции: =R n * tem.

— 2015-2017 year. (0.008 sec.

ОСНОВЫ КОНСТРУКТИВНЫХ РЕШЕНИЙ ЗДАНИЙ КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПО НАЗНАЧЕНИЮ Конструкции несущие – - воспринимают нагрузки и воздействия; - обеспечивают надежность, прочность, жесткость и устойчивость зданий Основные несущие конструкции образуют остов здания (конструктивную систему): фундаменты, стены, отдельные опоры, перекрытия, покрытия и т. п. Второстепенные несущие конструкции – перемычки над проемами, лестницы, блоки шахт лифтов Конструкции ограждающие – - разделяют и изолируют внутренний объем здания от внешней среды или между собой; - должны отвечать нормативным требованиям прочности, теплоизоляции, гидроизоляции, пароизоляции, воздухонепроницаемости, звукоизоляции, светопропусканию -и т. д. Основные ограждающие конструкции – ненесущие стены, перегородки, окна, витражи, фонари, двери, ворота Конструкции совмещенные – выполняют несущие и ограждающие функции – стены, перекрытия, покрытия

КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПО ПРОСТРАНСТВЕННОМУ РАСПОЛОЖЕНИЮ НЕСУЩИХ КОНСТРУКЦИЙ: ПО ПРОСТРАНСТВЕННОМУ РАСПОЛОЖЕНИЮ НЕСУЩИХ КОНСТРУКЦИЙ ВЕРТИКАЛЬНЫЕ ГОРИЗОНТАЛЬНЫЕ НЕСУЩИЕ КОНСТРУКЦИИ – покрытия и перекрытия: - воспринимают вертикальные нагрузки и поэтажно передают их вертикальным несущим конструкциям (стенам, колоннам и др.); - играют роль жестких дисков – горизонтальных диафрагм жесткости – воспринимают и перераспределяют горизонтальные нагрузки и воздействия (ветровые, сейсмические) между вертикальными несущими конструкциями; - как диафрагмы обеспечивают совместность и равенство горизонтальных перемещений вертикальных несущих конструкций при ветровых и сейсмических воздействиях за счет жесткого сопряжения горизонтальных несущих конструкций с вертикальными конструкциями.

КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПО ПРОСТРАНСТВЕННОМУ РАСПОЛОЖЕНИЮ НЕСУЩИХ КОНСТРУКЦИЙ: ВЕРТИКАЛЬНЫЕ ГОРИЗОНТАЛЬНЫЕ ВЕРТИКАЛЬНЫЕ НЕСУЩИЕ КОНСТРУКЦИИ: 1 – стержневые – стойки каркаса; 2 – плоскостные – стены, диафрагмы; 3 – объемно-пространственные элементы высотой в этаж – объемные блоки; 4 – внутренние объемно-пространственные полые стержни открытого или закрытого сечения на высоту здания – стволы (ядра) жесткости; 5 – объемно-пространственные внешние несущие конструкции на высоту здания в виде тонкостенной оболочки замкнутого сечения.

КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПО ХАРАКТЕРУ СТАТИЧЕСКОЙ РАБОТЫ (работы под нагрузкой) вертикальные конструкции НЕСУЩИЕ, САМОНЕСУЩИЕ И НАВЕСНЫЕ Несущие конструкции воспринимают все приходящиеся на них нагрузки и воздействия, включая нагрузки, передаваемые через элементы, расположенные выше и опирающиеся на них (элементы перекрытий и покрытий), и передающие эти нагрузки через фундаменты грунтам основания. Самонесущие конструкции работают только на восприятие собственного веса, а также атмосферных воздействий (ветровые нагрузки, температурные воздействия) и передают их фундаментам и далее грунтам основания. На самонесущие конструкции другие элементы здания не опираются. Навесные конструкции воспринимают собственный вес и атмосферные воздействия в пределах яруса или этажа и передают их внутренним конструкциям здания, на которые опираются сами – внутренние стены, колонны, перекрытия. Навесная конструкция не имеет под собой фундамента.

КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПО ПРОСТРАНСТВЕННОМУ РАСПОЛОЖЕНИЮ НЕСУЩИХ КОНСТРУКЦИЙ ПО ХАРАКТЕРУ СТАТИЧЕСКОЙ РАБОТЫ (работы под нагрузкой) вертикальные конструкции НЕСУЩИЕ, САМОНЕСУЩИЕ И НАВЕСНЫЕ

КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПО СПОСОБНОСТИ ВОСПРИНИМАТЬ УСИЛИЯ ЖЕСТКИЕ ГИБКИЕ (мягкие) Жесткие элементы воспринимают сжатие, растяжение и изгиб, сохраняя под воздействием нагрузки собственную первоначально заданную форму. Гибкие (мягкие) элементы могут воспринимать только растяжение. К гибким относятся металлические элементы конструкций в виде стальных канатов, полосовой и рулонной стали и алюминиевых сплавов. Мягкие элементы (материалы конструкций) представляют собой специальные ткани с синтетическими воздухонепроницаемыми покрытиями.

КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПО ХАРАКТЕРУ ПО ФОРМЕ СИЛОВОЙ РАБОТЫ В ОПОРНОЙ РЕАКЦИИ СЕЧЕНИЯ ПРОСТРАНСТВЕ - плоскостные - распорные - сплошные - пространственные - безраспорные - сквозные Конструкции плоскостные –способны воспринимать только такую приложенную к ним нагрузку, которая действует в одной определенной плоскости (в плоскости самой конструкции). Конструкции пространственные – способны воспринимать приложенную к ним пространственную систему сил в трех измерениях. Конструкции распорные – при действии вертикальной нагрузки возникает горизонтальная опорная реакция – распор. Конструкция безраспорная – при действии вертикальной нагрузки горизонтальные составляющие опорных реакций отсутствуют. Сплошные конструкции – плиты, стены, перегородки, балки, рамы, арки, оболочки покрытий. Сквозные конструкции – состоят из стержневых элементов, соединенных между собой в плоскостную или пространственную форму

ОСНОВЫ КОНСТРУКТИВНЫХ РЕШЕНИЙ ЗДАНИЙ КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПО СПОСОБАМ ИЗГОТОВЛЕНИЯ И МОНТАЖА Конструкции сборные – монтируются в проектное положение на строительной площадке из отдельных изделий и элементов заводского изготовления (бетонные, железобетонные, металлические, деревянные). Например, стены монтируют из панелей, перекрытия – из плит, наконец, все здание – из объемных блоков. Конструкции монолитные – бетонные и железобетонные; основные части выполнены в виде единого целого (монолита) непосредственно на месте возведения здания; используется опалубка – форма, определяющая конфигурацию будущей конструкции; внутри опалубки устанавливается арматура, укладывается бетонная смесь с уплотнением и контролем твердения. Конструкции сборномонолитные – рационально объединены в различных сочетаниях сборные элементы и монолитный бетон. Сборные элементы могут играют роль несъемной опалубки; монолитный бетон повышает несущую способность конструкции, обеспечивает жесткое соединение элементов конструкции.

КОНСТРУКТИВНОЕ РЕШЕНИЕ ЗДАНИЯ определяется следующими базовыми характеристиками КОНСТРУКТИВНАЯ СИСТЕМА – КОНСТРУКТИВНАЯ СХЕМА – СТРОИТЕЛЬНАЯ СИСТЕМА – обобщенная конструктивно-статическая характеристика здания, определяется основным видом вертикальных несущих конструкций и не зависит от материала конструкций и способа возведения здания: вариант конструктивной системы по составу элементов и их расположению в пространстве; характеристика конструктивного решения здания по материалу элементов и косвенно – по способу возведения: 1 – каркасная система; 2 – стеновая система; 3 – объемно-блочная (столбчатая) система; 4 – ствольная система; 5 – оболочковая (периферийная) система например, стеновая система может быть реализована по одной из пяти схем: - перекрестное расположение несущих стен; - поперечное с большим шагом расположение несущих стен; - поперечное с малым шагом расположение несущих стен; - продольное расположение трех и более несущих стен; - продольное расположение двух несущих стен - традиционная (из мелкоразмерных элементов ручной кладки); - каркасно-панельная, объемноблочная полносборная; - бетонная и железобетонная сборно-монолитная и монолитная; - с применением дерева и пластмасс

КОНСТРУКТИВНЫЕ РЕШЕНИЯ ОБЪЕМНО-БЛОЧНОЙ СИСТЕМЫ

Строительные конструкции очень разнообразны по своему на­значению и применению. Тем не менее их можно объединить по некоторым признакам общности тех или иных свойств, т.е. про­классифицировать, уточнив при этом некоторые понятия.

Воз­можны различные подходы к классификации конструкций.

Имея в качестве основной конечной цели учебника расчет кон­струкций, целесообразнее всего проклассифицировать их по сле­дующим признакам:

1) по геометрическому признаку конструкции принято разде­лять на массивы, брусья, плиты, оболочки (рис. 1.1) и стержне­вые системы (рис. 1.3):

Рис. 1.1. Классификация конструкций по геометрическому признаку: а) массив; б) брус; в) плита; г) оболочка

Массив -конструкция, в которой все размеры одного поряд­ка, например у фундамента размеры могут бьггь такими: а= 1,8 м; Ъ - 1,2 м; И = 1,5 м. Размеры могут бьггь и другими, но порядок их один - метры;

Брус - элемент, в котором два размера во много раз меньше третьего, т.е. они разного порядка: Ь« /, А « /. Например, у же­лезобетонной балки они могут быть такими: Ь- 20 см, И = 40 см, а /= 600 см, т.е. они моїуг отличаться друг от друга на целый по­рядок (в 10 и более раз).

Брус с ломаной осью принято называть простейшей рамой, а с криволинейной осью - аркой (рис. 1.2, а, б);

Плита - элемент, в котором один размер во много раз мень­ше двух других: И « а, И « /. В качестве примера можно приве­сти ребристую железобетонную плиту (точнее, поле плиты), у ко­торой толщина собственно плиты И может быть 3-4 см, а длина и ширина порядка 150 см. Плита является частным случаем более общего понятия - оболочки, которая в отличие от плиты имеет криволинейное очертание (рис. 1.1, г). Рассмотрение оболочек вы­ходит за рамки нашего курса;

Стержневые системы представляют собой геометрически не­изменяемые системы стержней, соединенных между собой шар­нирно или жестко. К ним относятся строительные фермы (балоч­ные или консольные) (рис. 1.3).

Рис. 1.2. Разновидности брусьев: а) рама; б) арка

Рис. 1.3. Примеры простейших стержневых систем: а) балочная ферма; б) консольная ферма

Размеры во всех примерах приведены в качестве ориентира и не исключают их многообразия. Есть случаи, когда трудно отнес­ти конструкцию к тому или иному виду по этому признаку. В рам­ках данного учебника все конструкции вполне вписываются в приведенную классификацию;

2) с точки зрения статики конструкции делятся на стати­чески определимые и статически неопределимые. К первым от­носятся системы (конструкции), усилия или напряжения в ко­торых могут быть определены только из уравнений статики (уравнений равновесия), ко вторым - такие, для которых од­них уравнений статики недостаточно. В настоящем учебнике преимущественно рассматриваются статически определимые конструкции;

3) по используемым материалам конструкции делятся на сталь­ные, деревянные, железобетонные, бетонные, каменные (кирпичные)",

4) с точки зрения напряженно-деформированного состояния, т.е. возникающих в конструкциях внутренних усилий, напряже­ний и деформаций под действием внешней нагрузки, условно можно поделить их на три группы: простейшие, простые и слож­ные (табл. 1.1). Такое разделение не является общепринятым, но позволяет привести в систему характеристики видов напряжен­но-деформированных состояний конструкций, которые широко распространены в строительной практике и будут рассмотрены в учебнике. В представленной таблице трудно отразить все тон­кости и особенности указанных состояний, но она дает возмож­ность сравнить и оценить их в целом. Подробнее о стадиях на­пряженно-деформированных состояний будет сказано в соответ­ствующих главах.