Альтернативные источники энергии

Селекция растений, методы. Методы селекции растений Дать характеристику методам селекции

Селекция растений, методы. Методы селекции растений Дать характеристику методам селекции

Методы селекции растений и животных, отбор и гибридизация, формы отбора

Введение

1. Формы отбора

2. Методы отбора и гибридизации в селекции самоопыляющихся растений.

Заключение

Список литературы

ВВЕДЕНИЕ

Селекция - наука о выведении новых сортов растений и пород животных и об улучшении уже существующих. Ее название происходит от латинского слова selectio - отбор и правильно отражает основную особенность селекции; различные формы отбора являются главной основой деятельности всех селекционеров. Выделению селекции как самостоятельной науки предшествовала практическая селекция, в течение длительного времени проводившаяся чисто эмпирическим путем, а сначала даже совершенно бессознательно.

Селекция растений - одно из самых ранних достижений человека. Селекция началась тогда, когда человек стал одомашнивать растения, выращивая их в контролируемых условиях и отбирая те формы, которые обеспечивали надежный источник пищи. Эта первобытная селекция растений, как и селекция животных, становилась все более продуктивной, вокруг этих источников пищи постепенно оседали группы людей. С развитием деревень и городов количество рабочей силы увеличивалось и люди могли уже находить время для занятий искусствами и религиями. Следовательно, с одомашниванием растений и животных связана одна из самых важных фаз в переходе человека от кочевого, во многом индивидуалистического образа жизни, к тому сложно организованному обществу, которое существует сегодня. Почти все современные продовольственные культуры представляют собой прямой результат человеческой деятельности в эпоху примитивного сельского хозяйства.

На этом раннем этапе селекция шла медленно и успехи ее носили случайный характер. Она оставалась искусством, а не наукой до тех пор, пока в начале ХХ в. не были открыты и использованы в селекции растений менделевские законы наследственности. Однако, несмотря на это, селекция всегда будет в какой-то мере искусством. Как искусство, селекция опирается на знание самого растения, его морфологических особенностей и реакций на условия внешней среды.

Как наука, селекция растений основывается на принципах генетики. Генетика объяснила наследственность, и ее законы позволили заранее предвидеть результаты селекции. Вначале внимание генетиков было сосредоточено на генах, влияющих на качественные признаки: окраску, морфологические особенности, устойчивость к болезням. Позже генетики стали изучать количественные признаки: урожайность, высоту растения, раннеспелость и другие.

Селекция растений и животных - это одна из форм эволюции, которая во многих отношениях подчиняется тем же принципам, что и эволюция видов в природе, но с одним важным отличием: естественный отбор заменен здесь, по крайней мере, частично, сознательным отбором, проводимым человеком.

Основными методами селекции являются отбор и гибридизация, наряду с новыми методами, основанными на достижениях генетики: методом выведения самоопыленных линий и последующего получения линейных гибридов, методом экспериментальной полиплоидии, методом экспериментального мутагенеза. Целесообразность применения тех или иных методов селекции к определенным живым организмам во многом зависит от способов их размножения. Это самоопыляющиеся, перекрестноопыляющиеся, вегетативно размножаемые растения, животные и микроорганизмы.

1. ФОРМЫ ОТБОРА

Селекция как наука создана трудами Чарльза Дарвина (1809-1882), который произвел тщательный анализ деятельности селекционеров и на основании этого анализа создал учение об искусственном отборе. Книга Дарвина «Происхождение видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь» была опубликована 24 ноября 1859 г., и эту дату считают временем появления селекции как науки, т. к. учение об искусственном отборе в развернутой форме было изложено именно в этом труде Дарвина.

Дарвин выделил три формы отбора, имеющих место у культурных растений и домашних животных: методический, бессознательный и естественный отбор. Естественный отбор создал те формы растений и животных, которые затем были введены человеком в культуру и подвергнуты одомашниванию, и продолжал и продолжает действовать на них и после их одомашнивания человеком. Это воздействие естественного отбора происходит помимо воли и желания человека, вызывая изменения, связанные с приспособлением к новым условиям, которые созданы человеком в процессе одомашнивания. Многие особенности сортов растений и пород животных, нередко совсем нежелательные для человека, созданы таким воздействием естественного отбора. Бессознательный отбор производился человеком давно и выражался в сохранении на племя лучших экземпляров и уничтожении худших без сознательного намерения вывести улучшенную породу. Многие особенности домашних животных созданы в результате такого бессознательного отбора, проводившегося в течение десятков тысячелетий. Методический отбор отличается от бессознательного тем, что человек сознательно и систематически стремится к изменению породы (сорта) в сторону известного и заранее установленного идеала.

В глубокой древности, а в настоящее время у экономически отсталых народностей методический отбор имел и имеет сравнительно примитивную форму, но уже в Древнем Риме он приобрел довольно сложный и совершенный характер. Наиболее широкое распространение и совершенную форму методический отбор получил после развития капиталистических отношений в сельском хозяйстве некоторых стран Западной Европы. В этих странах широкое распространение получили сельскохозяйственные выставки, на которых лучшие представители пород и сортов получали ценные призы и золотые медали, что стало очень выгодным делом и проводилось в широких масштабах многими предприятиями и фирмами и приняло промышленный характер.

В результате за короткий период (менее 100 лет) были достигнуты выдающиеся успехи в деле улучшения культурных растений и животных, и новые породы, выведенные в Англии, не только значительно увеличили производительность сельского хозяйства, но и пользовались широким спросом на международном рынке и приносили большие прибыли английским селекционерам и заводчикам. В этот же период во Франции была выведена новая порода тонкорунных овец, а в России А. Т. Болотовым - новые сорта яблони.

Приемы и методы, разработанные отдельными селекционерами, обеспечивающие максимальную эффективность искусственного отбора. Это:

    правильность выбора исходного материала для селекции;

    правильная постановка цели селекции;

    проведение селекции в достаточно широких масштабах и возможно более жесткая трактовка материала на всех этапах селекции;

    проведение отбора только по одному основному свойству, а не сразу по многим.

Учение об искусственном отборе послужило теоретической основой для практической деятельности целого поколения селекционеров и значительно повысило эффективность их работы. Так, в частности, учение Ч. Дарвина оказало сильное влияние на деятельность крупнейшего русского селекционера в области селекции плодовых и ягодных культур И. В. Мичурина, который вывел сорта, имеющие огромное экономическое значение для средней полосы нашей страны.

2. МЕТОДЫ ИНДИВИДУАЛЬНОГО ОТБОРА И ГИБРИДИЗАЦИИ В СЕЛЕКЦИИ САМООПЫЛЯЮЩИХСЯ РАСТЕНИЙ. РАБОТЫ А. П. ШЕХУРДИНА И В. Н. МАМОНТОВОЙ

Среди культурных растений есть большая группа самоопыляющихся, имеющих разнообразные приспособления, содействующие самоопылению и предотвращающие возможность перекрестного опыления. Так, у ячменя, пшеницы, овса есть нераскрывающиеся, или клейстогамные, цветки, у которых самоопыление происходит нередко еще до того, как колос появится из влагалища. У хлопчатника тычиночные нити образуют колонку, через которую и продвигается достигший зрелости пестик, захватывая при этом пыльцу. Существуют и другие приспособления к постоянному самоопылению. Преобладание самоопыления накладывает резкий отпечаток на биологию размножения, физиологию и генотипические особенности таких растений. Самоопыление приводит к тому, что все рецессивные мутации подвергаются воздействию естественного отбора. Полезные изменения закрепляются и получают широкое распространение, а вредные - уничтожаются. Вследствие этого в генофонде самоопылителей отсутствуют вредные (летальные или полулетальные) гены; вместе с тем у самоопылителей не бывает гетерозиса (гибридная мощность), связанного с гетерозиготностью.

Популяции самоопыляющихся растений, сложившиеся под влиянием естественного отбора и бессознательного искусственного отбора, представляют собой сложные смеси различных гомозиготных линий.

Методический отбор вначале имел форму массового отбора и состоял в выделении, сохранении и использовании для посева семян лучших растений и использовании для потребительских целей средних и худших.

Деятельность первых селекционных станций и семеноводческих фирм начиналась с массового отбора, проводившегося внутри местных сортов. Отбор селекционеры-специалисты проводили в широких масштабах и тщательно, по большому количеству хозяйственно ценных признаков. В результате улучшение местных сортов происходило значительно быстрее, и сорта, созданные массовым отбором, существенно превосходили исходные местные по ряду хозяйственно ценных признаков.

Все же такие селекционные сорта по своим основным особенностям качественно не отличались от местных. Они, как и местные сорта, представляли собой смесь многих различных гомозиготных линий, были недостаточно однородны и довольно быстро «вырождались» в результате усиленного размножения линий с менее ценными свойствами. Эти недостатки сортов, получаемых при помощи массового отбора, уже давно заставляли селекционеров искать другие способы селекции самоопыляющихся растений.

Еще до опубликования трудов Ч. Дарвина английский селекционер Ле-Кутер (1836) успешно применил индивидуальный отбор, основанный на получении и размножении потомства от единичных отборных растений. Но он довел этот метод до крайности; он искал не просто лучшие растения, а лучшие колосья на лучших растениях и лучшие зерна на лучших колосьях. Это очень осложняло отбор и надолго задерживало его применение в селекции растений-самоопылителей. Яльмар Нильсон (1901) устранил крайности Ле-Кутера, остановившись на отборе отдельных лучших растений на том основании, что все семена в пределах одного растения у самоопылителей наследственно равноценны, и сделал индивидуальный отбор в такой форме основным методом селекции растений-самоопылителей.

Индивидуальный отбор у самоопыляющихся растений дает возможность разделить исходный местный сорт на составляющие его гомозиготные линии, сравнить их между собой, выделить среди них наиболее ценные с хозяйственной точки зрения, а затем размножить лучшие для использования в качестве лучших сортов.

Выведенные при помощи индивидуального отбора сорта качественно отличаются от местных сортов-популяций и селекционных сортов, полученных при помощи массового отбора. Они обладают высокой однородностью и устойчивостью, а опасность вырождения при длительном размножении без дополнительных отборов минимальна. Исследования В. И. Иогансена и его учение о чистых линиях создало теоретическую основу для метода индивидуального отбора, после чего этот метод под названием линатной селекции получил очень широкое распространение во всех странах мира. Индивидуальный отбор и в настоящее время незаменим, когда нужно улучшить местный сорт путем выделения из него чистых линий, наиболее ценных с хозяйственной точки зрения.

Систему индивидуального отбора в России можно представить следующим образом. Семена исходного местного сорта в возможно более однородных условиях высеваются в питомнике исходного материала. В этом питомнике ведется наблюдение за растениями, выделяются лучшие и с каждого в отдельности собираются семена. На следующий год они высеваются в селекционном питомнике первого года на отдельных делянках, делянки сравниваются между собой, худшие бракуются, а семена с лучших образуют семенной фонд селекционного питомника второго года. В этом питомнике также проводится сравнение лучших семей на отдельных делянках (в 2-3 повторностях), худшие бракуются, а семена лучших передаются в предварительное сортоиспытание, где они высеваются в большем числе повторностей, чем в селекционном питомнике. Семена наиболее выдающихся семей могут быть сразу переданы в конкурсное станционное сортоиспытание, в которое потом поступают и семена семей, оказавшихся лучшими в предварительном сортоиспытании.

Потомства семей, показавших себя лучшими в конкурсном сортоиспытании, рассматриваются как новые сорта, получают названия и передаются в Госсортсеть. Сорта, прошедшие здесь успешно трехлетнее испытание, допускаются к использованию в определенных регионах страны.

Успех такой селекции зависит главным образом от качества исходного местного сорта, размеров отбора в питомниках, правильности браковки на всех этапах селекционного процесса. Такая селекция не создает новые сорта, а только выявляет уже существующие.

В ряде случаев перед селекционерами стоит задача выведения новых сортов самоопыляющихся растений, обладающих свойствами, которые отсутствуют у местных сортов-популяций. В таких случаях возникает необходимость применения других методов селекции.

Одним из таких методов является систематическая селекция, основанная на скрещивании исходных форм, каждая из которых обладает признаками, желательными для селекционера. В этом и заключается метод гибридизации. Применение и разработку метода гибридизации можно показать на примере работ известных селекционеров нашей страны А. П. Шехурдина и В. Н. Мамонтовой, которые всю свою жизнь посвятили работе в области селекции яровой пшеницы на Саратовской селекционной опытной станции (ныне НИИСХ Юго-Востока).

А. П. Шехурдин пришел работать на опытную станцию с первых дней ее организации, имея за плечами только низшую сельскохозяйственную школу. (Он один из своей многодетной семьи, имеющей пятерых детей, получил образование). Испытывая недостаток образования, А. П. Шехурдин в 36 лет заканчивает вечернюю школу и поступает в Саратовский сельскохозяйственный институт. Через четыре года он его заканчивает и получает диплом агронома, хотя, по сути дела, он им давно уже является. Несмотря на трудности личного характера (у А. П. Шехурдина в тяжелые годы гражданской войны умерла жена, и он остался один с тремя детьми), он продолжал активно работать и вместе с Г. К. Мейстером стал автором особого метода селекции - сложной ступенчатой гибридизации.

Этот метод заключается в скрещивании двух далеких географических форм, отличающихся друг от друга по ряду хозяйственно ценных признаков, проведение среди гибридов старших поколений отбора в широких масштабах и создании таким путем нового сорта, соединяющего положительные свойства исходных форм. Затем такой сорт используется в качестве одного из родителей для скрещивания с далекой формой, которая обладает отсутствующими у него хозяйственно ценными признаками. Путем проводимого в широких масштабах отбора выделяется сорт, соединяющий положительные свойства родительских форм. Этот сорт снова используется в качестве одного из родителей для скрещивания с далекой от него формой и т. д. При такой ступенчатой гибридизации происходит непрерывное улучшение вновь выводимых сортов, которые все время приобретают новые и новые положительные хозяйственно ценные свойства. Путем ступенчатой гибридизации А. П. Шехурдин к 1937 г. вывел невиданный в то время сорт мягкой пшеницы стекловидная-1 (альбидум 1264), имевшей макаронные, крупяные и другие качества зерна, сходные со свойствами зерна твердых пшениц и даже превышающие их. Этот сорт послужил исходным для создания большой группы новых сортов сильных мягких пшениц, полученных как самим А. П. Шехурдиным, так и В. Н. Мамонтовой и их учениками.

В 1936 г. за выдающиеся заслуги в развитии селекции и создании сортов яровой пшеницы А. П. Шехурдину была присуждена ученая степень доктора сельскохозяйственных наук, а в 1945 г. он стал профессором, в 1946 г. - заслуженным деятелем науки РСФСР (он награжден орденом Ленина, двумя орденами Трудового Красного Знамени), а в 1942 г. (год войны) за создание сортов яровой пшеницы, высокоурожайных и устойчивых к бурой ржавчине, А. П. Шехурдину было присуждено звание лауреата Государственной премии.

Но была и другая, оборотная сторона у этой нашедшей признание титанической работы. Всех, кто знал А. П. Шехурдина, поражало его неиссякаемое трудолюбие. Его рабочий день начинался нередко еще до восхода солнца и заканчивался глубоким вечером. Часами он просиживал в лаборатории, занимаясь выбраковкой зерна. Итог его работы таков: под его руководством было выведено более 28 сортов яровой пшеницы, только за годы войны - 4 новых сорта. Перед Великой Отечественной войной сортами, выведенными Шехурдиным, было занято 10 млн гектаров, что составляло 44 % всех посевных площадей яровой пшеницы в стране. В 1977 г. площадь, занятая сортами, полученными в Саратове, составляла свыше 27 млн гектаров.

Так о А. П. Шехурдине отзывался директор Саратовской опытной станции: «...Специалист А. П. Шехурдин - человек редких знаний и исключительных дарований, беззаветный труженик и в то же время поразительно скромный человек. Вся его жизнь - это селекция пшеницы, неугасимое стремление дать для сельского хозяйства лучшие, наиболее совершенные сорта...»

Сам А. П. Шехурдин в своей научной деятельности выделял три этапа: с 1911 по 1918 гг., когда селекционеры пользовались в основном методом индивидуального отбора; с 1918 по 1927 гг., когда доминирующее значение приобрел метод гибридизации; с 1927 и, условно, по 1933 г. - велась разработка метода сложной ступенчатой гибридизации. Этот метод используется до сих пор; он стал венцом научной деятельности Шехурдина, дал сельскому хозяйству немало выдающихся сортов.

На первом этапе работы методом индивидуального отбора из местных стародавних сортов были получены новые сорта. В работе анализировалось огромное количество растений. О трудоемкости работы говорит такой факт: для выведения только одного сорта лютесценс-62 было изучено потомство 15 тыс. отдельных растений, испытывавшихся в течение ряда лет.

Очень пригодилась Шехурдину его природная наблюдательность: он замечал самые мельчайшие изменения, недоступные даже опытному глазу. Он мог не только по колосу, его форме, чешуйкам, но и по зерну определить разновидность сорта, часами бродил он среди своих посевов с записной книжкой, - и на глаз, и всеми прочими методами проверял зерно, раскусывал его.

В результате индивидуального отбора наиболее крепких растений («элиты») на основе местного сорта полтавка был отобран известный сорт лютесценс-62 и два сорта редко встречающейся тогда формы с белым зерном - альбидум-604 и альбидум-721. Из местного сорта селивановский русак тем же путем был выведен сорт остистой мягкой пшеницы эритроспермум-341, из белотурки в 1929 г. был создан сорт твердой пшеницы гордеиформе-432. Эти сорта были более засухоустойчивы, чем местные. Урожайность их выше на 10-26 %.

Кроме того, зерно альбидум-604 обладало исключительно высокими мукомольно-хлебопекарными качествами.

Из выведенных сортов особенно большое народнохозяйственное значение имел сорт лютесценс-62.

А. П. Шехурдин и его коллеги отлично понимали, что методом отбора невозможно вывести сорта, обладающие сложным комплексом ценных биологических и хозяйственных свойств. Селекционеры пришли к выводу, что для создания более совершенных сортов следует применять новый для того времени метод гибридизации в сочетании с индивидуальным направленным отбором.

В процессе работы А. П. Шехурдин разработал методику и технику искусственного скрещивания; он заметил и доказал на практике, что опыление цветков лучше производить не заготовленной ранее пыльцой, а непосредственно из созревших пыльников отцовских колосьев в тот момент, когда пыльца наиболее жизнеспособна. А. П. Шехурдин первым в истории отечественной селекции осуществил оригинальные скрещивания: внутривидовые - между близкими сортами пшеницы, межвидовые - скрещивал твердую пшеницу с мягкой, и даже межродовые - скрещивал пшеницу с рожью, пыреем, житняком, по сути дела, проводя отдаленную гибридизацию. В это время уже работала с Шехурдиным его ученица и продолжательница дела Валентина Николаевна Мамонтова, выпускница Высших женских сельскохозяйственных курсов им. И. А. Стебута в Петербурге.

Впоследствии, как и А. П. Шехурдин, В. Н. Мамонтова заочно заканчивает Саратовский сельскохозяйственный институт, ученую степень кандидата и доктора наук Валентина Николаевна получила без защиты диссертации - за выведение новых сортов пшеницы.

За сорта саратовская-29, 210, 35 и 38 в 1968 г. Мамонтовой В. Г. была присуждена Ленинская премия. В 1965 г. за большие успехи в селекции и семеноводстве и в связи с 70-летием со дня рождения Мамонтова В. Н. удостоена звания Героя Социалистического труда, ей присвоили звание почетного гражданина г. Саратова.

Но, возвращаясь к периоду 20-х гг., можно сказать о таких успехах: путем непрерывного отбора из восьмого поколения скрещивания твердой пшеницы белотурки с мягкой полтавской были созданы сорта саррубра (саратовская красная) и сарроза (саратовская розовая). Эти сорта превосходили родительские формы по урожаю на 2-2,5 ц с га, были уникальными по качеству сырья.

В 1935 г. академик Н. И. Вавилов писал: «Из наиболее крупных практических достижений Саратовской станции отметим безостый гибрид твердой и мягкой пшеницы саррубра, полученной от скрещивания полтавки и белотурки. Этот гибрид ныне занимает сотни тысяч гектаров в культуре и является наиболее крупным практическим достижением в мировой межвидовой гибридизации».

Применяя метод обычной гибридизации, Шехурдин и его сотрудники поняли, что, несмотря на значительный объем и длительный период работ по гибридизации, однократные скрещивания все-таки незначительно повышают урожайность и засухоустойчивость.

Применяя повторные скрещивания гибридов с одним из лучших родительских сортов или с другой ценной формой, Шехурдин таким образом разработал метод сложной, ступенчатой гибридизации. Особое значение здесь играл подбор родителей нового сорта. Так были созданы выдающиеся сорта альбидум-43, альбидум-24, саратовская-210, саратовская-29, саратовская-36, саратовская-38, саратовская-39.

Новые сорта выгодно отличались от родительских форм, так, альбидум-43 в среднем за 20 лет превысил урожайность родительского сорта на 35 %, созревает он на 4-5 дней раньше, чем полтавка и лютесценс-62.

Применение метода сложной ступенчатой гибридизации приносит ощутимые результаты, но этот процесс может быть очень длинным. Так, сорт альбидум-43 вошел в производство через 33 года после начала работы и получен путем сложного ступенчатого скрещивания 12 форм.

А. П. Шехурдин и его сотрудники широко применяли скрещивание географически отдаленных форм. Первое такое скрещивание было осуществлено еще в 1913 г. соединением пшеницы грекум, происходящей из Средней Азии, и местного сорта полтавки. Тем же способом был создан ряд высокоурожайных сортов яровой пшеницы. С местными выведенными сортами скрещивались канадские пшеницы кейченер и маркиз, наиболее ценными из полученных оказались сорта лютесценс-758 и саратовская-33, имеющие прочную соломину и не полегающие в условиях орошения при урожае 30-35 ц с га.

Много внимания уделялось выведению сортов, устойчивых к грибным болезням, - пыльной и твердой головке, к бурой, митовой и стеблевой ржавчине, мучнистой росе. После смерти А. П. Шехурдина (1951) его исследования успешно продолжила В. Н. Мамонтова. Она плодотворно использовала в своей селекционной работе отдаленную гибридизацию и метод ступенчатой гибридизации. В трудный период 1948 г., когда метод ступенчатой гибридизации подвергался резкой критике, она проявила большую твердость и принципиальность и продолжала работать в этом направлении. В результате ей удалось получить 13 очень ценных новых сортов яровой пшеницы, которые в 1964 г. занимали площадь в 16,5 млн га. А в 70-х гг. пшеница, выведенная Шехурдиным и Мамонтовой, заняла на полях страны 21 млн га. Такого еще не бывало. Первые огромные потоки зерна с казахстанской целины шли как раз за счет сорта, который получил всемирно известное имя - саратовская-29. Столь популярной она стала не только потому, что дает высокие урожаи и стойко переносит засушливые условия открытых всем ветрам степей. Содержание белка в зерне в благоприятные годы достигает огромной цифры - 21 %. Хлеб из ее муки получается высоким и пышным. Саратовская-29 среди сильных пшениц по качеству муки не имеет равных.

Согласно справочнику: пшеница считается отличной, если сила муки у нее превышает 400 джоулей, хорошей, когда этот показатель равен 350-400 джоулям, и слабой, если он меньше 180. У саратовской-29 сила муки, в зависимости от погодных условий и агротехники возделывания, колеблется от 640 до 1000 джоулей! Лондонская технологическая лаборатория Кент-Джонса дала такую оценку этому сорту: «Сорт саратовская-29 обладает необыкновенно высокой силой муки и является совершенно выдающимся сортом».

Сортами В. Н. Мамонтовой засевались земли Казахстана, поля Башкирии, Сибири. Для небывалых урожаев целинной пшеницы не хватало элеваторов. За 57 лет работы в Научно-исследовательском институте сельского хозяйства Юго-Востока (г. Саратов) В. Н. Мамонтова создала одна и в соавторстве 20 районированных в стране сортов. Янтарное зерно знаменитого сорта саратовская-29 закупали зарубежные страны для выпечки хлеба.

ЗАКЛЮЧЕНИЕ

Знаменитые сорта, созданные А. П. Шехурдиным и В. Н. Мамонтовой, еще раз закрепили славу Саратовской земли, которая всегда была знаменита отменными на всю Россию калачами, крупными, пышными, с румяной, нависающей грибом корочкой. Если в начале века пекари добивались улучшения качества хлеба простым механическим смешиванием муки из различных местных сортов, то саратовские селекционеры решили эту проблему, когда им удалось создать новые сорта яровой пшеницы, обладающие достаточно высокой силой муки.

На базе прекрасных сортов, созданных А. П. Шехурдиным и В. Н. Мамонтовой, в настоящее время селекционеры выводят новые сорта, отвечающие современным требованиям агропромышленного производства и мирового рынка. И это стало возможно благодаря существованию таких методов, как сложная ступенчатая гибридизация и индивидуальный отбор.

СПИСОК ЛИТЕРАТУРЫ

    Гужов Ю. Л., Фукс А., Валичек П. Селекция и семеноводство культивируемых растений. М.: Изд-во РУДН, 1999.

    Сеятели и хранители. М.: Современник, 1992.

    Жизнь в науке. Саратов: Приволжское кн. изд-во, 1979.

    А. П. Шехурдин. Избранные сочинения. М.: Изд-во сельскохозяйственной лит-ры, 1961.

    Н. И. Вавилов. Теоретические основы селекции. Т. II. 1935.

Основа успеха любой селекционной работы - генетическое разнообразие материала и методы селекции. Использование таких исходных материалов позволяет получать новые гибриды и сорта, с самыми разнообразными характеристиками и свойствами. Основы селекции заложили известнейшие ученые мира:

Н. К. Кольцов (создал основы для молекулярной генетики).

Н. И. Вавилов (открыл закон гомологических рядов);

И. В. Мичурин (вывел множество плодовых гибридов).

Основные методы селекции растений и животных были разработаны на основе всех предыдущих открытий и совершенствуются до сих пор. Селекционеры в своей работе используют различные способы селекции: инбридинг, искусственный мутагенез, полиплоидию, отдаленную гибридизацию. Ниже приведены наиболее часто применяемые способы выведения новых растений и пород животных.

Основные методы селекции растений: гибридизация и отбор. Перекрестно-опыляемые растения селекционируют путем тех особей, которые имеют желательные свойства. Для получения наиболее чистых линий, то есть генетической однородности сорта, используют индивидуальный отбор, в ходе которого путем самоопыления достигается получение потомства от единственной особи, обладающей всеми самыми лучшими признаками. Недостатком такого метода является то, что при этом нередко наблюдаются неблагоприятные проявления Основной причиной этого является переход большого числа генов в состояние гомозиготы. Со временем накопление рецессивных мутантных генов, переходящих в гомозиготное состояние, может вызвать неблагоприятные наследственные изменения. В природных условиях у самоопыляемого растения рецессивные гены переходят в состояние гомозиготы, и такое растение быстро погибает.

При использовании метода самоопыления часто снижается урожайность. Для ее повышения проводят перекрестное опыление разных самоопыляющихся линий растений и получают высокоурожайные гибриды. Такие методы селекции называются межлинейной гибридизацией. Самой высокой урожайностью обладают гибриды первого поколения. При этом наблюдается известный эффект гетерозиса, согласно которому при скрещивании «чистых» линий получаются мощные гибриды. Они устойчивы к неблагоприятным воздействиям, поскольку в них устранено вредное влияние рецессивных генов, а объединение сильных родительских растений усиливает эффект.

Нередко в селекции различных растений используется экспериментальная полиплоидия. Полученные таким путем растения обладают крупными размерами, дают хороший урожай и быстро растут. Получаются искусственные полиплоиды под воздействием химических веществ, разрушающих веретено деления. В результате этого удвоившиеся хромосомы остаются в одном ядре.

Новые сорта выводят и при помощи искусственного мутагенеза. Организм, который в результате мутации получил новые свойства, имеет слабую жизнеспособность, поэтому при отсеивается. Для селекции и эволюции новых сортов и пород необходимы редкие особи, имеющие нейтральные или благоприятные мутации.

Методы селекции животных практически не отличаются от основных методов селекции растений. Особенности работы с ними - их половое размножение и небольшое потомство. Отбор родителей и тип скрещивания проводятся с определенными целями, поставленными селекционером. Все животные получают оценку не только по своим внешним признакам, а и по качеству потомства и происхождению. Поэтому так важно знать их родословную. В селекции чаще всего применяют 2 способа скрещивания:

Инбридинг (близкородственное) - скрещиваются родители, сестры, братья. Такое скрещивание нельзя проводить бесконечно. Его используют, как правило, для улучшения свойств породы;

Аутбридинг (неродственное) - скрещивание представителей одной или разных пород и строгий отбор потомков с лучшими свойствами.

Отдаленная гибридизация животных значительно менее эффективна, чем гибридизация растений. Такие межвидовые гибриды часто оказываются бесплодными.

Основные методы селекции растений

Классическими методами селœекции растений были и остаются гибридизация и отбор.
Размещено на реф.рф
Различают две основные формы искусственного отбора: массовый и индивидуальный .

1. Массовый отбор применяют при селœекции перекрестноопыляемых растений, таких, как рожь, кукуруза, подсолнечник. При этом выделяют группу растений, обладающих ценными признаками. В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя даже от одного материнского растения обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

2. Индивидуальный отбор эффективен для самоопыляемых растений (пшеницы, ячменя, гороха). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и принято называть чистой линией . Чистая линия - потомство одной гомозиготной самоопыленной особи. У любой особи тысячи генов, и так как происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всœего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

3. Естественный отбор в селœекции играет определяющую роль. На любое растение в течение всœей его жизни действует целый комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определœенному температурному и водному режиму.

4. Инбридинг используют при самоопылении перекрестноопыляемых растений , к примеру, для получения чистых линий кукурузы. При этом подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса - жизненной силы, образуют початки более крупные, чем початки родительских форм. От них получают чистые линии - на протяжении ряда лет, производят принудительное самоопыление - срывают метелки с выбранных растений и, когда появляются рыльца пестиков, их опыляют пыльцой этого же растения. Изоляторами предохраняют соцветия от попадания чужой пыльцы. У гибридов многие рецессивные неблагоприятные гены при этом переходят в гомозиготное состояние, и это приводит к снижению их жизнеспособности, к депрессии. Далее скрещивают чистые линии между собой для получения гибридных семян, дающих эффект гетерозиса.

Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии - тем больший эффект гетерозиса, и первое гибридное поколение дает прибавку урожая до 30% (рис. 339).

ААbbCCdd x aaBBccDD

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования: иногда гетерозиготное состояние по одному или нескольким генам дает гибриду превосходство над родительскими формами по массе и продуктивности. Но начиная со второго поколения эффект гетерозиса затухает, так как часть генов переходит в гомозиготное состояние.

АА 2Аа аа

5. Перекрестное опыление самоопылителœей дает возможность сочетать свойства различных сортов. Рассмотрим, как это практически выполняется при создании новых сортов пшеницы. У цветков растения одного сорта удаляются пыльники, рядом в банке с водой ставится растение другого сорта͵ и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селœекционеру признаки разных сортов.

6. Очень перспективен метод получения полиплоидов, у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют из себяестественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

7. Отдаленная гибридизация - скрещивание растений, относящихся к разным видам. Но отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не конъюгируют), и не образуются гаметы.

В 1924 году советский ученый Г.Д.Карпеченко получил плодовитый межродовой гибрид. Он скрестил редьку (2n = 18 редечных хромосом) и капусту (2n = 18 капустных хромосом). У гибрида в диплоидном наборе было 18 хромосом: 9 редечных и 9 капустных, но при мейозе редечные и капустные хромосомы не конъюгировали, гибрид был стерильным.

С помощью колхицина Г.Д.Карпеченко удалось удвоить хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе редечные (9 + 9) хромосомы конъюгировали с редечными, капустные (9 + 9) с капустными. Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), (рис. 341) пшенично-пырейные гибриды и др.
Размещено на реф.рф
Виды, у которых произошло объединœение разных геномов в одном организме, а

затем их кратное увеличение, называются аллополиплоидами.

8. Использование соматических мутаций применимо для селœекции вегетативно размножающихся растений, что использовал в своей работе еще И.В.Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Вместе с тем, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

9. Экспериментальный мутагенез основан на открытии воздействия различных излучений для получения мутаций и на использование химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций, сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Многие методы селœекции растений были предложены И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств гибрида в нужную сторону. К примеру, в случае если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества; или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на возможность управления доминированием определœенных признаков при развитии гибрида. Для этого на ранних стадиях развития крайне важно воздействие определœенными внешними факторами. К примеру, в случае если гибриды выращивать в открытом грунте, на бедных почвах, повышается их морозостойкость.

Основные методы селекции растений - понятие и виды. Классификация и особенности категории "Основные методы селекции растений" 2017, 2018.

Селекцией растений называется наука, изучающая способы создания новых и усовершенствования имеющихся сортов культурных растений с важными в практике признаками. Различают несколько основных методов селекции: отбор, гибридизация, мутагенез и полиплоидия .

Искусственный отбор – основа селекционного процесса. В комплексе с генетическими методиками отбор дает возможность создавать сорта растений с заранее предопределенными особенностями. Отбор может быть массовым и индивидуальным.

Массовый отбор представляет собой выделение ряда экземпляров по внешним признакам без проверки их генотипа. Хорошие результаты в данном случае отмечаются при высоком коэффициенте наследуемости нужных свойств. Данный вид отбора эффективен относительно качественных особенностей, контролируемых одним либо несколькими генами, и редко дает положительные результаты относительно полигенных качеств с низкими коэффициентом наследования. В этом случае востребован индивидуальный (методический) отбор.

При проведении индивидуального отбора (по генотипу) оценивают потомство каждого отдельно взятого растения в ряду нескольких поколений с учетом контроля особенностей, важных для селекционера. Впоследствии оставляют только те экземпляры растений, которые дали максимальное количество потомков с ценными качествами. Благодаря этому, становится возможным оценивать наследственные свойства отдельно взятых особей и способность передавать их следующим поколениям.

Более эффективной считается методика сочетания отбора с некоторыми видами скрещивания (гибридизации) . Все методы гибридизации можно подразделить на аутбридинг (неродственное, или межсортовое скрещивание) и инбридинг (близкородственное, или внутрисортовое скрещивание). Инбридинг аналогичен самоопылению у растений, что приводит к увеличению гомозиготности. Для так называемых чистых линий растений характерно не только наличие ценных признаков, но и сниженная жизнеспособность, что обусловлено переходом в гомозиготное состояние всех вредных рецессивных мутаций. Если чистые линии продолжать скрещивать между собой, то появляется эффект гетерозиса. Благодаря аутбридингу, внутри одного сорта поддерживаются ценные свойства и улучшаются в следующих поколениях гибридов за счет повышения уровня гетерозиготности потомков и гетерогенности популяции.

Селекционерами часто применяется метод полиплоидии и отдаленной гибридизации при создании новых сортов растений, в частности метод автополиплоидии. В ходе этого процесса происходит увеличение размеров клеток из-за увеличения количества хромосом. Также повышается стойкость растений к воздействию вредных микробов (вирусов, бактерий, грибков), неблагоприятных физических и химических факторов. Доказано, что полиплоидные организмы являются более жизнеспособными, чем диплоидные. 80% ныне существующих культурных растений полиплоидные. К ним относятся зерновые культуры, овощные и плодово-ягодные, лекарственные, технические и декоративные растения, дающие большие урожаи, по сравнению с диплоидными аналогами.

В основе аллополиплоидии лежит метод отдаленной гибридизации – скрещивания экземпляров растений, принадлежащих к разным видам, иногда родам. Так, были получены межвидовые гибриды-полиплоиды редьки и капусты, пшеницы и ржи, обладающих высокой урожайностью, неприхотливостью и устойчивостью ко многим вредным факторам и болезням.

В селекции растений часто применяют спонтанные мутации . Так, при естественной мутации экземпляра желтого люпина было получено несколько сортов сладкого люпина, пригодного в качестве корма скота, тогда как исходный вид, содержащий алкалоиды, скот не поедал. Огромное количество мутантов характерно для плодовых культур. Они описаны как новые сорта или существуют в гибридизации с другими формами.

В настоящее время во многих научных лабораториях ряда стран проводятся работы по получению индуцированных мутаций. Такие мутанты были выделены с помощью воздействия физических факторов (например, рентгеновского излучения) у некоторых злаковых культур. Они отличаются рядом ценных свойств: повышенной урожайностью, увеличением размера семян и др.

Основы селекции. Методы селекции

Селекция является одной из важнейших областей практического применения генетики, то есть, генетика - теоретическая основа селекции, так как генетика помогает рационально планировать селекционную работу, исходя из законов наследственности и изменчивости и конкретных особенностей наследования определённого признака.

Кроме этого селекция опирается на достижения других наук, например, систематики и географии растений, цитологии, эмбриологии, биохимии и физиологии растений и животных, молекулярной биологии и др.

Селекция - это наука о методах создания новых и улучшения существующих пород домашних животных и сортов культурных растений и штаммов микроорганизмов .

Селекция - это эволюционный процесс, в котором человек является главным действующим фактором и направляет весь процесс в соответствии со своими потребностями.

Порода, сорт, штамм - это популяция организмов, искусственно созданная человеком, которая характеризуется определёнными наследственными особенностями. Все особи внутри сорта, породы или штамма имеют сходный генотип, фенотип и однотипную реакцию на влияние факторов среды, например, молочные породы крупного рогатого скота отличаются величиной удоя, процентом жирности и содержанием белка в молоке.

Ценность сорта определяется урожайностью, пищевыми и кормовыми свойствами.

Ценность породы определяется качеством и количеством, получаемой продукции.

Основные задачи селекции :

  • повышение урожайности сортов культурных растений, увеличение продуктивности пород домашних животных и штаммов микроорганизмов;
  • улучшение качества продукции (свойства льна, содержание клейковины в зерне, количества сахара в свекле и др);
  • улучшение физиологических свойств (скороспелость, морозостойкость и др);
  • повышение интенсивности развития (у растений - на подкормку, у животных - на условия содержания).

Условия успешной селекционной работы:

Исходный материал (сорт, порода или вид);

Изучение роли мутаций в появлении определённого признака;

Исследование закономерностей наследования при гибридизации;

Роль среды в развитии признака;

Применение искусственного отбора.

(Яркий пример селекции с учётом потребностей рынка - пушное звероводство, так как выращивание норки, соболя лисы идёт соответственно меняющейся моде. Особое значение имеет селекция насекомых для биологических методов борьбы. Для изготовления печенья необходимы мягкие сорта пшеницы, а для изготовления макаронных изделий - твёрдые. Выведены породы кур, не снижающие продуктивность в условиях большой скученности на птицефабриках. Для Белоруссии важно создание сортов растений, продуктивных в условиях бесснежных морозных зим, и в условиях поздних заморозков.)

Успех селекционной работы очень сильно зависит от генетического разнообразия исходной группы организмов. Генофонд существующих пород и сортов намного меньше, чем генофонд диких видов.

С целью изучения многообразия и географического распространения культурных растений Н. И. Вавилов провёл ряд экспедиций по всему земному шару, был собран огромный семенной материал и выделены центры происхождения культурных растений:

1) южноазиатский (Индия) - родина риса, бананов, цитрусовых, сахарного тростника;

2) восточноазиатский (Китай) - родина сои, роса, гречихи, яблоня, груша;

3) юго-западноазиатский (Средняя Азия) - родина пшеницы, гороха, винограда;

4) средиземноморской - родина капусты, свеклы, маслин;

5) абиссинсий (Африка) - родина твёрдой пшеницы, ячменя, кофейного дерева;

6) центральноамериканский (Мексика) - родина кукурузы, какао, перца, фасоли, хлопка;

7) южноамериканский (Южная Америка) - родина картофеля, табака, подсолнечника.

Исследования Вавилова позволяют селекционерам быстрее подбирать исходный материал и в определённой мере предвидеть результаты.

Исходный материал :

Дикие формы (они отличаются рядом полезных свойств, например, устойчивость к резким колебаниям климатических факторов, к заболеваниям, имеют высокую плодовитость, но уступают культурным по продуктивности);

Искусственно полученные мутантные формы;

Формы, полученные в результате комбинативной изменчивости;

Сорта и породы, полученные в других климатических условиях.

Основные методы селекции :

  • - гибридизация;
  • получение чистых линий;
  • использование явления гетерозиса;
  • индуцированный мутагенез;
  • использование полиплоидных форм;
  • искусственный отбор.

Гибридизация

а) инбридинг - близкородственное скрещивание;

б) аутбридинг - неродственное скрещивание то есть скрещивание особей одной или разных пород или одного или разных сортов.

Искусственный отбор - это процесс, в результате которого оставляются для размножения лучше приспособленные особи.

На ранних этапах эволюции человека отбор был бессознательным , он начался с одомашнивания, то есть, вначале вероятно проводился отбор по поведению (выживали те особи, которые смогли контактировать с человеком), а в дальнейшем, стали затрагиваться и другие признаки, на племя оставлялись лучшие особи.

На современном этапе в селекции применяют методический отбор :

а) массовый - проводится по внешним фенотипическим признакам в направлении, выбранном селекционером, его недостаток - не даёт генетически однородного материала, всегда необходим повторный отбор;

б) индивидуальный - основан на оценке генотипа.

При искусственном отборе на гибрид одновременно действует и естественный отбор , который повышает его приспособленность к конкретным условиям среды.

В настоящее время в селекции всё чаще используют индуцированный мутагенез , который состоит в повышении количества мутаций в результате воздействия на организм различных мутагенов.

Значительное место в селекции в основном растений отводят получению полиплоидных форм , так как они характеризуются большей урожайностью, обычно используют колхицин, который разрушает нити веретена деления и препятствует расхождению гомологичных хромосом при мейозе.

Селекционный процесс идёт по пути : исходный материал → отбор → гибридизация → отбор → гибридизация → отбор и т.д.

Селекция растений :

1) постановка конкретной задачи ;

2) подбор исходного материала , (если не удаётся найти необходимые родительские формы используют искусственный мутагенез, и среди появившихся мутаций находят полезные, которые и используют в дальнейшей работе);

3) гибридизация - это получение гибридов от скрещивания генетически разнородных организмов.

а) оно основано на искусственном опылении своей пыльцой обычно перекрёстноопыляемых растений, такое опыление ведёт к повышению гомозиготности и закреплению наследственных свойств, а потомство, полученное от одного гомозиготного растения путём самоопыления - это чистая линия.

Чистая линия отличается снижением жизнеспособности и падением урожайности.

Если затем скрестить две чистые линии между собой - межлинейная гибридизация, то получим явление гетерозиса

Гетерозис объясняется переходом большинства генов в гетерозиготное состояние. Явление гетерозиса можно закрепить путём вегетативного размножения;

б) аутбридинг - скрещивание неродственных организмов , однако такая гибридизация осуществляется с трудом , и межвидовые и межродовые гибриды бесплодны, так как невозможна конъюгация хромосом разных видов или родов при мейозе. Впервые преодолеть бесплодность межвидовых гибридов удалось Карпеченко, который получил гибрид капусты и редьки (9 «редечных» и 9 «капустных» хромосом) бесплодный, тогда учёный получил полиплоидную форму гибрида, у которого было по 18 «редечных» и « капустных» хромосом, стала возможна конъюгация гомологичных хромосом капусты с «капустными» и редьки с «редечными», причём каждая гамета несла по 18 хромосом (9 «редечных» и 9 «капустных»), такой гибрид стал плодовитым. Таким образом, полиплоидия стала одним из способов восстановления плодности у межвидовых гибридов растений.

Отдалённая гибридизация позволяет соединить в одном организме ценные признаки разных видов и даже родов.

Трудности в осуществлении отдалённой гибридизации:

Несовпадение циклов размножения;

Несовместимость пыльцевых трубок.

Методы преодоления :

Метод вегетативного сближения (предварительная прививка одного вида на другой) (гибрид рябины и груши);

Опыление смесью пыльцы (яблоня + груша);

Метод посредника (гибрид дикого вида с диким, затем с культурным для повышения морозоустойчивости).

4) искусственный отбор заключается в сохранении для размножения растений с желаемыми признаками:

а) массовый отбор

б) индивидуальный отбор

При искусственном отборе на сорт одновременно действует и естественный отбор , который повышает приспособленность растений к конкретным условиям среды.

Созданный сорт - это результат деятельности человека и окружающей среды.

Выведение новых высокоурожайных сортов растений позволяет резко интенсифицировать сельскохозяйственное производство.

Успехи селекционной работы :

Академик П. П. Лукъяненко - озимая пшеница Безостая 1 - урожайность до 100 ц/га, Аврора;

Шехурдин и Мамонтова - Саратовская29, Саратовская -36;

Академик Н. В. Цицын - гибрид пшеницы и ржи - тритикале - высокие мукомольные качества сочетаются со способностью расти на бедных почвах;

Академик В. С. Пустовойт - сорт подсолнечника с содержанием масла в семенах свыше 20 %;

А. Н. Лутков - новые сорта сахарной свеклы с повышенной сахаристостью и урожайностью;

М. И. Хаджинов - высокоурожайные сорта кукурузы;

П. И. Айсмик - высокоурожайные сорта картофеля - Темп, Огонёк, Ласунак, Синтез и др;

А. Л. Семёнов - многолетние травы;

А. Г. Волузнев - сорта чёрной смородины: Белорусская сладкая, Катюша, Партизанка, красной смородины: Ненаглядная, крыжовника: Щедрый

Большой вклад в селекцию растений внёс И. В. Мичурин (1855-1935), 60 лет посвятил выведению новых сортов, трудился в г. Козлове (ныне Мичуринск) Тамбовской области. Вначале свой деятельности он пытался акклиматизировать южные сорта путём закаливания в северных районах, но они вымерзали, тогда он использовал методы селекции. В основе его работ лежит сочетание трёх основных методов:

- гибридизации;

- отбора;

- воздействие условий среды на развивающиеся гибриды (их «воспитание» в желаемом направлении .

Большое внимание Мичурин придавал подбору исходных родительских форм для гибридизации. Он скрещивал местные морозостойкие сорта с южными, получаемые сеянцы подвергал строгому отбору и содержал в относительно суровых условиях. Этим методом был получен сорт Славянка, гибрид Антоновки и южного Ранета ананасного.

Особое значение Мичурин придавал скрещиванию географически удалённых форм, не растущих в той местности, где осуществляется гибридизация. Этим методом был выведен сорт Бельфлёр-китайка, гибрид китайской яблони из Сибири и американского сорта Бельфлёр жёлтый.

Мичурин широко использовал отдалённую гибридизацию :

Он получил гибриды малины и ежевики;

Рябины и боярышника.

Мичурин использовал для преодоления в осуществлении отдалённой гибридизации следующие приёмы:

- метод вегетативного сближения (предварительная прививка одного вида на другой приводит к изменению химического состава тканей, в том числе и генеративных органов, что увеличивает вероятность прорастания пыльцевых трубок в пестике) (гибрид рябины и груши);

- опыление смесью пыльцы для стимуляции прорастания пыльцевых трубок, то есть «своя» пыльца раздражает рыльце пестика и оно воспринимает «чужую» пыльцу (яблоня + груша);

- метод посредника (гибрид дикого вида с диким, затем с культурным для повышения морозоустойчивости).

Большинство сортов, выведенных Мичуриным являются сложными гетерозиготами , поэтому для их сохранения используют только вегетативное размножение (отводками, прививками).

Селекция животных :

Основные подходы не отличаются от подходов при селекции растений, но есть особенности:

а) животные размножаются только половым путём;

б) половое созревание наступает довольно поздно;

в) небольшое количество потомков.

1) постановка конкретной задачи ;

2) подбор родительских пар, при селекции животных важное значение имеет учёт экстерьера - это совокупность наружных признаков животных, их телосложения и соотношения частей тела. Разные породы животных неодинаково реагируют на изменение внешних условий, например, у мясных пород улучшение питания приводит к увеличению массы тела, а у молочных - на повышение удоев;

3) гибридизация - это получение гибридов от скрещивания генетически разнородных организмов.

а) инбридинг - близкородственное скрещивание, оно основано на скрещивании особей одного поколения или родителей и потомков, что ведёт к повышению гомозиготности и закреплению наследственных свойств. Длительный инбридинг ведёт к ослаблению и даже гибели, так как в гомозиготном состоянии выявляется много рецессивных мутаций, для преодоления этих проблем после нескольких инбридингов используют аутбридинг для повышения гетерозиготности;

Если затем скрестить две чистые линии между собой - то получим явление гетерозиса или гибридной мощи - это повышенная жизнеспособность и плодовитость у гибридов первого поколения, которая снижается в последующих поколениях.

Различают 3 вида гетерозиса:

- репродуктивный - большая плодовитость, чем у родителей;

- соматический - увеличения вегетативной массы;

- адаптационный - гибриды оказываются лучше приспособленными.

Гетерозис объясняется переходом большинства генов в гетерозиготное состояние, так как в гетерозиготном состоянии не проявляются мутантные аллели.

Явление гетерозиса можно закрепить путём попеременного скрещивания гибрида с одной или другой исходной формой .

б) аутбридинг - скрещивание особей разных пород;

4) искусственный отбор заключается в сохранении для размножения животных с желаемыми признаками:

а) массовый отбор - выделение группы организмов с нужными признаками и получение потомства, причём отбор повторяют из поколения в поколение, так как особи могут давать расщепление;

б) индивидуальный отбор - выращивание потомков одной особи, отбор происходит быстрее, но количество потомков меньше.

При искусственном отборе на породу одновременно действует и естественный отбор , который повышает приспособленность животных к конкретным условиям среды;

5) метод определения качества производителей по потомству (количество и жирность молока, яйценоскость).

Созданная порода - это результат деятельности человека и окружающей среды.

Выведение новых высокопродуктивных пород домашних животных позволяет резко повысить количество и качество продукции для питания.

Успехи селекционной работы :

М. Ф. Иванов - белая степная украинская свинья;

Породы тонкорунных овец;

Стерильные гибриды лошади и осла - мулы;

М. П. Гринь - селекция крупного рогатого скота чёрно-пёстрая порода;

В. Т. Горин - селекция свиней;

- межвидовые гибриды - мул (гибрид кобылы и осла - бесплоден, но вынослив, силён, долгожитель), гибрид между белугой и стерлядью, гибрид карпа и карася, гибрид быка и яка.

Биотехнология - это использование человеком живых организмов и биологических процессов для промышленного производства различных продуктов.

В биотехнологии используют микроорганизмы (прокариоты - бактерии и сине-зелёные водоросли) и эукариоты - грибы, микроскопические водоросли.

Использование микроорганизмов в таких процессах, как виноделие, хлебопечение, сыроварение и др, известно с древности, однако современная биотехнология возникла в середине 70-х г. XX века.

Особенности селекция микроорганизмов состоят в том, что учёные практически не лимитированы ни временем, ни пространством, так как микроорганизмы:

б) имеют простую регуляцию активности генов;

в) очень быстро размножаются;

г) имеют гаплоидный набор , поэтому любая мутация проявляется уже в первом поколении;

д) в небольшом количестве пробирок и чашек Петри за несколько дней можно вырастить миллионы особей, то есть, легко получить несколько поколений организмов практически за короткое время.

В селекции микроорганизмов используют их естественные способности синтезировать полезные для человека вещества.

Этапы селекции :

Выделение из дикой природы микроорганизмов, способных синтезировать нужные соединения;

Отбор наиболее продуктивных штаммов;

Индуцированный мутагенез и использование селективных сред (среды, на которых хорошо растут мутанты, но погибают исходные родительские особи дикого типа);

Отбор по продуктивности.

В качестве питательной среды для микроорганизмов используют непищевые продукты: жидкие фракции нефти, синтетические спирты, отходя деревообрабатывающей промышленности и др.

В настоящее время в биотехнологии большое значение получили методы клеточной и генной инженерии , которые открывают широкие возможности в перестройке генома для получения организмов с заданными свойствами:

Так в геном кишечной палочки был включён ген, ответственный за образование инсулина;

Были сконструированы штаммы бактерий, способные разрушать нефтепродукты, их используют для очистки воды при разливах нефти;

Были сконструированы штаммы бактерий, продуцирующих в больших количествах аминокислоты, витамины, интерферон и др.

Метод генной инженерии - это конструирование новых генетических структур по заранее намеченному плану

Метод генной инженерии включает :

  • выделение из клеток отдельных генов или синтез генов вне клеток;
  • синтезирование или клонирование генов или перенос и встраивание данных генов в геном с помощью векторов;
  • отбор клеток с рекомбинантным геномом.

Данный метод стал возможен в результате открытия ферментов рестриктаз, которые разрезают молекулу ДНК в нужном месте и ферментов лигаз, которые сшивают куски различных молекул ДНК и открытию векторов.

Вектор - это короткая кольцевая молекула ДНК, которая может самостоятельно размножаться в клетке бактерии (вирус, бактериофаг, специально сконструированная плазмида). Вначале необходимый ген встраивают в такой вектор, а затем, в геном клетки-хозяина.

Трансгенные растения и животные - организмы, геном которых изменён путём генноинженерных операций.

Клеточная инженерия позволяет конструировать целые клетки, а также отдельные их фрагменты на основе их культивирования, гибридизации и реконструкции

  • клетки организма переводят в культуру , и эти клетки синтезируют необходимые человеку вещества, например, переведенные в культуру клетки женьшеня синтезируют лекарственное сырьё, причём с такими клетками можно проводить индуцированный мутагенез или отдалённую гибридизацию для повышения их продуктивности, например, получены гибридомы клеток, синтезирующих антитела с раковыми клетками, которые способными к бесконечному синтезу;
  • из культивируемых и гибридизированных клеток получают растения-регенераты , например, гибриды томата и картофеля, яблони и вишни.

(Однако манипуляции на уровне геномов могут привести к появлению штаммов в непредсказуемыми свойствами, поэтому прогрессивными учёными была проведена конференция с призывом к мораторию на работы по генной инженерии, учёные стали работать над получением мутантных штаммов, которые в естественной среде жить не могут и такие организмы были получены, они могут жить только на питательной среде и для живых организмов не опасны).