Альтернативные источники энергии

Методы селекции растений таблица с примерами. Какой метод исследования используют в селекции

Методы селекции растений таблица с примерами. Какой метод исследования используют в селекции

Основы селекции. Методы селекции

Селекция является одной из важнейших областей практического применения генетики, то есть, генетика - теоретическая основа селекции, так как генетика помогает рационально планировать селекционную работу, исходя из законов наследственности и изменчивости и конкретных особенностей наследования определённого признака.

Кроме этого селекция опирается на достижения других наук, например, систематики и географии растений, цитологии, эмбриологии, биохимии и физиологии растений и животных, молекулярной биологии и др.

Селекция - это наука о методах создания новых и улучшения существующих пород домашних животных и сортов культурных растений и штаммов микроорганизмов .

Селекция - это эволюционный процесс, в котором человек является главным действующим фактором и направляет весь процесс в соответствии со своими потребностями.

Порода, сорт, штамм - это популяция организмов, искусственно созданная человеком, которая характеризуется определёнными наследственными особенностями. Все особи внутри сорта, породы или штамма имеют сходный генотип, фенотип и однотипную реакцию на влияние факторов среды, например, молочные породы крупного рогатого скота отличаются величиной удоя, процентом жирности и содержанием белка в молоке.

Ценность сорта определяется урожайностью, пищевыми и кормовыми свойствами.

Ценность породы определяется качеством и количеством, получаемой продукции.

Основные задачи селекции :

  • повышение урожайности сортов культурных растений, увеличение продуктивности пород домашних животных и штаммов микроорганизмов;
  • улучшение качества продукции (свойства льна, содержание клейковины в зерне, количества сахара в свекле и др);
  • улучшение физиологических свойств (скороспелость, морозостойкость и др);
  • повышение интенсивности развития (у растений - на подкормку, у животных - на условия содержания).

Условия успешной селекционной работы:

Исходный материал (сорт, порода или вид);

Изучение роли мутаций в появлении определённого признака;

Исследование закономерностей наследования при гибридизации;

Роль среды в развитии признака;

Применение искусственного отбора.

(Яркий пример селекции с учётом потребностей рынка - пушное звероводство, так как выращивание норки, соболя лисы идёт соответственно меняющейся моде. Особое значение имеет селекция насекомых для биологических методов борьбы. Для изготовления печенья необходимы мягкие сорта пшеницы, а для изготовления макаронных изделий - твёрдые. Выведены породы кур, не снижающие продуктивность в условиях большой скученности на птицефабриках. Для Белоруссии важно создание сортов растений, продуктивных в условиях бесснежных морозных зим, и в условиях поздних заморозков.)

Успех селекционной работы очень сильно зависит от генетического разнообразия исходной группы организмов. Генофонд существующих пород и сортов намного меньше, чем генофонд диких видов.

С целью изучения многообразия и географического распространения культурных растений Н. И. Вавилов провёл ряд экспедиций по всему земному шару, был собран огромный семенной материал и выделены центры происхождения культурных растений:

1) южноазиатский (Индия) - родина риса, бананов, цитрусовых, сахарного тростника;

2) восточноазиатский (Китай) - родина сои, роса, гречихи, яблоня, груша;

3) юго-западноазиатский (Средняя Азия) - родина пшеницы, гороха, винограда;

4) средиземноморской - родина капусты, свеклы, маслин;

5) абиссинсий (Африка) - родина твёрдой пшеницы, ячменя, кофейного дерева;

6) центральноамериканский (Мексика) - родина кукурузы, какао, перца, фасоли, хлопка;

7) южноамериканский (Южная Америка) - родина картофеля, табака, подсолнечника.

Исследования Вавилова позволяют селекционерам быстрее подбирать исходный материал и в определённой мере предвидеть результаты.

Исходный материал :

Дикие формы (они отличаются рядом полезных свойств, например, устойчивость к резким колебаниям климатических факторов, к заболеваниям, имеют высокую плодовитость, но уступают культурным по продуктивности);

Искусственно полученные мутантные формы;

Формы, полученные в результате комбинативной изменчивости;

Сорта и породы, полученные в других климатических условиях.

Основные методы селекции :

  • - гибридизация;
  • получение чистых линий;
  • использование явления гетерозиса;
  • индуцированный мутагенез;
  • использование полиплоидных форм;
  • искусственный отбор.

Гибридизация

а) инбридинг - близкородственное скрещивание;

б) аутбридинг - неродственное скрещивание то есть скрещивание особей одной или разных пород или одного или разных сортов.

Искусственный отбор - это процесс, в результате которого оставляются для размножения лучше приспособленные особи.

На ранних этапах эволюции человека отбор был бессознательным , он начался с одомашнивания, то есть, вначале вероятно проводился отбор по поведению (выживали те особи, которые смогли контактировать с человеком), а в дальнейшем, стали затрагиваться и другие признаки, на племя оставлялись лучшие особи.

На современном этапе в селекции применяют методический отбор :

а) массовый - проводится по внешним фенотипическим признакам в направлении, выбранном селекционером, его недостаток - не даёт генетически однородного материала, всегда необходим повторный отбор;

б) индивидуальный - основан на оценке генотипа.

При искусственном отборе на гибрид одновременно действует и естественный отбор , который повышает его приспособленность к конкретным условиям среды.

В настоящее время в селекции всё чаще используют индуцированный мутагенез , который состоит в повышении количества мутаций в результате воздействия на организм различных мутагенов.

Значительное место в селекции в основном растений отводят получению полиплоидных форм , так как они характеризуются большей урожайностью, обычно используют колхицин, который разрушает нити веретена деления и препятствует расхождению гомологичных хромосом при мейозе.

Селекционный процесс идёт по пути : исходный материал → отбор → гибридизация → отбор → гибридизация → отбор и т.д.

Селекция растений :

1) постановка конкретной задачи ;

2) подбор исходного материала , (если не удаётся найти необходимые родительские формы используют искусственный мутагенез, и среди появившихся мутаций находят полезные, которые и используют в дальнейшей работе);

3) гибридизация - это получение гибридов от скрещивания генетически разнородных организмов.

а) оно основано на искусственном опылении своей пыльцой обычно перекрёстноопыляемых растений, такое опыление ведёт к повышению гомозиготности и закреплению наследственных свойств, а потомство, полученное от одного гомозиготного растения путём самоопыления - это чистая линия.

Чистая линия отличается снижением жизнеспособности и падением урожайности.

Если затем скрестить две чистые линии между собой - межлинейная гибридизация, то получим явление гетерозиса

Гетерозис объясняется переходом большинства генов в гетерозиготное состояние. Явление гетерозиса можно закрепить путём вегетативного размножения;

б) аутбридинг - скрещивание неродственных организмов , однако такая гибридизация осуществляется с трудом , и межвидовые и межродовые гибриды бесплодны, так как невозможна конъюгация хромосом разных видов или родов при мейозе. Впервые преодолеть бесплодность межвидовых гибридов удалось Карпеченко, который получил гибрид капусты и редьки (9 «редечных» и 9 «капустных» хромосом) бесплодный, тогда учёный получил полиплоидную форму гибрида, у которого было по 18 «редечных» и « капустных» хромосом, стала возможна конъюгация гомологичных хромосом капусты с «капустными» и редьки с «редечными», причём каждая гамета несла по 18 хромосом (9 «редечных» и 9 «капустных»), такой гибрид стал плодовитым. Таким образом, полиплоидия стала одним из способов восстановления плодности у межвидовых гибридов растений.

Отдалённая гибридизация позволяет соединить в одном организме ценные признаки разных видов и даже родов.

Трудности в осуществлении отдалённой гибридизации:

Несовпадение циклов размножения;

Несовместимость пыльцевых трубок.

Методы преодоления :

Метод вегетативного сближения (предварительная прививка одного вида на другой) (гибрид рябины и груши);

Опыление смесью пыльцы (яблоня + груша);

Метод посредника (гибрид дикого вида с диким, затем с культурным для повышения морозоустойчивости).

4) искусственный отбор заключается в сохранении для размножения растений с желаемыми признаками:

а) массовый отбор

б) индивидуальный отбор

При искусственном отборе на сорт одновременно действует и естественный отбор , который повышает приспособленность растений к конкретным условиям среды.

Созданный сорт - это результат деятельности человека и окружающей среды.

Выведение новых высокоурожайных сортов растений позволяет резко интенсифицировать сельскохозяйственное производство.

Успехи селекционной работы :

Академик П. П. Лукъяненко - озимая пшеница Безостая 1 - урожайность до 100 ц/га, Аврора;

Шехурдин и Мамонтова - Саратовская29, Саратовская -36;

Академик Н. В. Цицын - гибрид пшеницы и ржи - тритикале - высокие мукомольные качества сочетаются со способностью расти на бедных почвах;

Академик В. С. Пустовойт - сорт подсолнечника с содержанием масла в семенах свыше 20 %;

А. Н. Лутков - новые сорта сахарной свеклы с повышенной сахаристостью и урожайностью;

М. И. Хаджинов - высокоурожайные сорта кукурузы;

П. И. Айсмик - высокоурожайные сорта картофеля - Темп, Огонёк, Ласунак, Синтез и др;

А. Л. Семёнов - многолетние травы;

А. Г. Волузнев - сорта чёрной смородины: Белорусская сладкая, Катюша, Партизанка, красной смородины: Ненаглядная, крыжовника: Щедрый

Большой вклад в селекцию растений внёс И. В. Мичурин (1855-1935), 60 лет посвятил выведению новых сортов, трудился в г. Козлове (ныне Мичуринск) Тамбовской области. Вначале свой деятельности он пытался акклиматизировать южные сорта путём закаливания в северных районах, но они вымерзали, тогда он использовал методы селекции. В основе его работ лежит сочетание трёх основных методов:

- гибридизации;

- отбора;

- воздействие условий среды на развивающиеся гибриды (их «воспитание» в желаемом направлении .

Большое внимание Мичурин придавал подбору исходных родительских форм для гибридизации. Он скрещивал местные морозостойкие сорта с южными, получаемые сеянцы подвергал строгому отбору и содержал в относительно суровых условиях. Этим методом был получен сорт Славянка, гибрид Антоновки и южного Ранета ананасного.

Особое значение Мичурин придавал скрещиванию географически удалённых форм, не растущих в той местности, где осуществляется гибридизация. Этим методом был выведен сорт Бельфлёр-китайка, гибрид китайской яблони из Сибири и американского сорта Бельфлёр жёлтый.

Мичурин широко использовал отдалённую гибридизацию :

Он получил гибриды малины и ежевики;

Рябины и боярышника.

Мичурин использовал для преодоления в осуществлении отдалённой гибридизации следующие приёмы:

- метод вегетативного сближения (предварительная прививка одного вида на другой приводит к изменению химического состава тканей, в том числе и генеративных органов, что увеличивает вероятность прорастания пыльцевых трубок в пестике) (гибрид рябины и груши);

- опыление смесью пыльцы для стимуляции прорастания пыльцевых трубок, то есть «своя» пыльца раздражает рыльце пестика и оно воспринимает «чужую» пыльцу (яблоня + груша);

- метод посредника (гибрид дикого вида с диким, затем с культурным для повышения морозоустойчивости).

Большинство сортов, выведенных Мичуриным являются сложными гетерозиготами , поэтому для их сохранения используют только вегетативное размножение (отводками, прививками).

Селекция животных :

Основные подходы не отличаются от подходов при селекции растений, но есть особенности:

а) животные размножаются только половым путём;

б) половое созревание наступает довольно поздно;

в) небольшое количество потомков.

1) постановка конкретной задачи ;

2) подбор родительских пар, при селекции животных важное значение имеет учёт экстерьера - это совокупность наружных признаков животных, их телосложения и соотношения частей тела. Разные породы животных неодинаково реагируют на изменение внешних условий, например, у мясных пород улучшение питания приводит к увеличению массы тела, а у молочных - на повышение удоев;

3) гибридизация - это получение гибридов от скрещивания генетически разнородных организмов.

а) инбридинг - близкородственное скрещивание, оно основано на скрещивании особей одного поколения или родителей и потомков, что ведёт к повышению гомозиготности и закреплению наследственных свойств. Длительный инбридинг ведёт к ослаблению и даже гибели, так как в гомозиготном состоянии выявляется много рецессивных мутаций, для преодоления этих проблем после нескольких инбридингов используют аутбридинг для повышения гетерозиготности;

Если затем скрестить две чистые линии между собой - то получим явление гетерозиса или гибридной мощи - это повышенная жизнеспособность и плодовитость у гибридов первого поколения, которая снижается в последующих поколениях.

Различают 3 вида гетерозиса:

- репродуктивный - большая плодовитость, чем у родителей;

- соматический - увеличения вегетативной массы;

- адаптационный - гибриды оказываются лучше приспособленными.

Гетерозис объясняется переходом большинства генов в гетерозиготное состояние, так как в гетерозиготном состоянии не проявляются мутантные аллели.

Явление гетерозиса можно закрепить путём попеременного скрещивания гибрида с одной или другой исходной формой .

б) аутбридинг - скрещивание особей разных пород;

4) искусственный отбор заключается в сохранении для размножения животных с желаемыми признаками:

а) массовый отбор - выделение группы организмов с нужными признаками и получение потомства, причём отбор повторяют из поколения в поколение, так как особи могут давать расщепление;

б) индивидуальный отбор - выращивание потомков одной особи, отбор происходит быстрее, но количество потомков меньше.

При искусственном отборе на породу одновременно действует и естественный отбор , который повышает приспособленность животных к конкретным условиям среды;

5) метод определения качества производителей по потомству (количество и жирность молока, яйценоскость).

Созданная порода - это результат деятельности человека и окружающей среды.

Выведение новых высокопродуктивных пород домашних животных позволяет резко повысить количество и качество продукции для питания.

Успехи селекционной работы :

М. Ф. Иванов - белая степная украинская свинья;

Породы тонкорунных овец;

Стерильные гибриды лошади и осла - мулы;

М. П. Гринь - селекция крупного рогатого скота чёрно-пёстрая порода;

В. Т. Горин - селекция свиней;

- межвидовые гибриды - мул (гибрид кобылы и осла - бесплоден, но вынослив, силён, долгожитель), гибрид между белугой и стерлядью, гибрид карпа и карася, гибрид быка и яка.

Биотехнология - это использование человеком живых организмов и биологических процессов для промышленного производства различных продуктов.

В биотехнологии используют микроорганизмы (прокариоты - бактерии и сине-зелёные водоросли) и эукариоты - грибы, микроскопические водоросли.

Использование микроорганизмов в таких процессах, как виноделие, хлебопечение, сыроварение и др, известно с древности, однако современная биотехнология возникла в середине 70-х г. XX века.

Особенности селекция микроорганизмов состоят в том, что учёные практически не лимитированы ни временем, ни пространством, так как микроорганизмы:

б) имеют простую регуляцию активности генов;

в) очень быстро размножаются;

г) имеют гаплоидный набор , поэтому любая мутация проявляется уже в первом поколении;

д) в небольшом количестве пробирок и чашек Петри за несколько дней можно вырастить миллионы особей, то есть, легко получить несколько поколений организмов практически за короткое время.

В селекции микроорганизмов используют их естественные способности синтезировать полезные для человека вещества.

Этапы селекции :

Выделение из дикой природы микроорганизмов, способных синтезировать нужные соединения;

Отбор наиболее продуктивных штаммов;

Индуцированный мутагенез и использование селективных сред (среды, на которых хорошо растут мутанты, но погибают исходные родительские особи дикого типа);

Отбор по продуктивности.

В качестве питательной среды для микроорганизмов используют непищевые продукты: жидкие фракции нефти, синтетические спирты, отходя деревообрабатывающей промышленности и др.

В настоящее время в биотехнологии большое значение получили методы клеточной и генной инженерии , которые открывают широкие возможности в перестройке генома для получения организмов с заданными свойствами:

Так в геном кишечной палочки был включён ген, ответственный за образование инсулина;

Были сконструированы штаммы бактерий, способные разрушать нефтепродукты, их используют для очистки воды при разливах нефти;

Были сконструированы штаммы бактерий, продуцирующих в больших количествах аминокислоты, витамины, интерферон и др.

Метод генной инженерии - это конструирование новых генетических структур по заранее намеченному плану

Метод генной инженерии включает :

  • выделение из клеток отдельных генов или синтез генов вне клеток;
  • синтезирование или клонирование генов или перенос и встраивание данных генов в геном с помощью векторов;
  • отбор клеток с рекомбинантным геномом.

Данный метод стал возможен в результате открытия ферментов рестриктаз, которые разрезают молекулу ДНК в нужном месте и ферментов лигаз, которые сшивают куски различных молекул ДНК и открытию векторов.

Вектор - это короткая кольцевая молекула ДНК, которая может самостоятельно размножаться в клетке бактерии (вирус, бактериофаг, специально сконструированная плазмида). Вначале необходимый ген встраивают в такой вектор, а затем, в геном клетки-хозяина.

Трансгенные растения и животные - организмы, геном которых изменён путём генноинженерных операций.

Клеточная инженерия позволяет конструировать целые клетки, а также отдельные их фрагменты на основе их культивирования, гибридизации и реконструкции

  • клетки организма переводят в культуру , и эти клетки синтезируют необходимые человеку вещества, например, переведенные в культуру клетки женьшеня синтезируют лекарственное сырьё, причём с такими клетками можно проводить индуцированный мутагенез или отдалённую гибридизацию для повышения их продуктивности, например, получены гибридомы клеток, синтезирующих антитела с раковыми клетками, которые способными к бесконечному синтезу;
  • из культивируемых и гибридизированных клеток получают растения-регенераты , например, гибриды томата и картофеля, яблони и вишни.

(Однако манипуляции на уровне геномов могут привести к появлению штаммов в непредсказуемыми свойствами, поэтому прогрессивными учёными была проведена конференция с призывом к мораторию на работы по генной инженерии, учёные стали работать над получением мутантных штаммов, которые в естественной среде жить не могут и такие организмы были получены, они могут жить только на питательной среде и для живых организмов не опасны).

Школа № 643

Реферат по биологии

"Методы селекции"

Ученицы 9Б класса

Жаровой Анны

Учитель Дубовик О. А.

Санкт-Петербург 2008-2009

Определение селекции, основные методы

Методы селекции растений

Методы селекции животных

История селекции

Учёные, которые внесли вклад в развитие селекции и генетики

Примеры селекции живых организмов

Список использованных источников


Определение селекции, основные методы

Селекция – это эволюция, управляемая человеком

Н. И. Вавилов

Селекция - наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов с целью увеличения их продуктивности, повышения устойчивости к болезням, вредителям, приспособления к местным условиям и другое. Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных. Основными методами селекции являются отбор и гибридизация, а также мутагенез (образующий метод в селекции высших растений и микроорганизмов, который позволяет искусственно получать мутации с целью увеличения продуктивности), полиплоидия (кратное увеличение диплоидного или гаплоидного набора хромосом, вызванное мутацией), клеточная (совокупность методов конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции)и генная инженерия (наука, создающая новые комбинации генов в молекуле ДНК). Как правило, эти методы комбинируют. В зависимости от способа размножения вида применяют массовый или индивидуальный отбор. Скрещивание разных сортов растений и пород животных – основа повышения генетического разнообразия потомства

Методы селекции растений

Основные методы селекции растений в частности - отбор и гибридизация. Для перекрестно-опыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Если же желательно получение чистой линии - то есть генетически однородного сорта, то применяют индивидуальный отбор, при котором путем самоопыления получают потомство от одной единственной особи с желательными признаками.

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрестно-опыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов. Основная причина этого - переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают.

Несмотря на неблагоприятные последствия самоопыления, его часто применяют у перекрестно-опыляемых растений для получения гомозиготных ("чистых") линий с нужными признаками. Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса (гетерозис – мощное развитие гибридов, полученных при скрещивании "чистых" линий, одна из которых гомозиготная по доминантным, другая - по рецессивным генам): гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина - объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации.

Методы селекции животных

Основные принципы селекции животных не отличаются от принципов селекции растений. Однако селекция животных имеет некоторые особенности: для них характерно только половое размножение; в основном очень редкая смена поколений (у большинства животных через несколько лет); количество особей в потомстве невелико.

Одним из важнейших достижений человека на заре его становления и развития (10-12 тыс. лет назад) было создание постоянного и достаточно надежного источника продуктов питания путем одомашнивания диких животных. Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У домашних животных весьма развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека. Поэтому в естественных условиях одомашненные формы существовать не могут.

Одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более спокойный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у животных определенных качеств, удовлетворяющих человека.

Отбор родительских форм и типы скрещивания животных проводятся с учетом цели, поставленной селекционером. Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства. Поэтому необходимо хорошо знать их родословную. По признакам предков, особенно по материнской линии, можно судить с известной вероятностью о генотипе производителей.

В селекционной работе с животными применяют в основном два способа скрещивания: аутбридинг (неродственное скрещивание) и инбридинг (близкородственное).

Аутбридинг между особями одной породы или разных пород животных, при дальнейшем строгом отборе приводит к поддержанию полезных качеств и к усилению их в ряду следующих поколений.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство. Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков.

В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются.

У домашних животных, как и у растений, наблюдается явление гетерозиса: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности.

Гетерозис широко применяют в промышленном птицеводстве и свиноводстве, так как первое поколение гибридов непосредственно используют в хозяйственных целях.

Отдаленная гибридизация домашних животных менее эффективна, чем растений. Межвидовые гибриды животных часто бывают бесплодными. Но в некоторых случаях отдаленная гибридизация сопровождается нормальным слиянием гамет, обычным мейозом и дальнейшим развитием зародыша, что позволило получить некоторые породы, сочетающие ценные признаки обоих использованных в гибридизации видов.

История селекции

Первоначально в основе селекции лежал искусственный отбор, когда человек отбирает растения или животных с интересующими его признаками. До XVI-XVII вв. отбор происходил бессознательно, то есть человек, например, отбирал для посева лучшие, самые крупные семена пшеницы, не задумываясь о том, что он изменяет растения в нужном ему направлении.

Только в последнее столетие человек, еще не зная законов генетики, стал использовать отбор сознательно или целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени.

Однако методом отбора человек не может получить принципиально новых свойств у разводимых организмов, так как при отборе можно выделить только те генотипы, которые уже существуют в популяции. Поэтому для получения новых пород и сортов животных и растений применяют гибридизацию (скрещивание), скрещивая растения с желательными признаками и, в дальнейшем, отбирая из потомства те особи, у которых полезные свойства выражены наиболее сильно.

Учёные, которые внесли вклад в развитие селекции и генетики

1) Г. Мендель

Этот немецкий учёный заложил основы современной генетики, установив в 1865 году принцип дискретности (прерывности), наследовании признаков и свойств организмов. Также он доказал метод скрещивания (на примере гороха) и обосновал три закона, названных позже его именем.

2) Т. Х. Морган

В начале двадцатого века этот американский биолог обосновал хромосомную теорию наследственности, согласно которой наследственные признаки определяются хромосомами - органоидами ядра всех клеток организма. Ученый доказал, что гены расположены среди хромосом линейно и что гены одной хромосомы сцеплены между собой.

3) Ч. Дарвин

Этот учёный, основатель теории происхождения человека от обезьяны, провёл большое количество опытов по гибридизации, в ряде которых и была установлена теория о происхождении человека.

4) Т. Фэрчайлд

Впервые в 1717 году получил искусственные гибриды. Это были гибриды гвоздик, получившиеся в результате скрещивания двух различных родительских форм

5) И. И. Герасимов

В 1892 году русский ботаник Герасимов исследовал влияние температуры на клетки зеленой водоросли спирогиры и обнаружил удивительное явление - изменение числа ядер в клетке. После воздействия низкой температурой или снотворным, он наблюдал появление клеток без ядер, а также с двумя ядрами. Первые вскоре погибали, а клетки с двумя ядрами успешно делились. При подсчете хромосом оказалось, что их вдвое больше, чем в обычных клетках. Так было открыто наследственное изменение, связанное с мутацией генотипа, т.е. всего набора хромосом в клетке. Оно получило название полиплоидии, а организмы с увеличенным числом хромосом – полиплоидов.

5) М. Ф. Иванов

Выдающуюся роль в селекции животных сыграли достижения известного советского селекционера Иванова, разработавшего современные принципы отбора и скрещивания пород. Он сам широко вводил генетические принципы в практику племенного дела, сочетая их с подбором условий воспитания и кормления, благоприятных для развития породных свойств. На этой основе им были созданы такие выдающиеся породы животных, как белая украинская степная свинья и асканийский рамбулье.

6) Я. Вильмут

В последнее десятилетие активно изучается возможность искусственного массового клонирования уникальных животных, ценных для сельского хозяйства. Основной подход заключается в переносе ядра из диплоидной соматической клетки в яйцеклетку, из которой предварительно удалено собственное ядро. Яйцеклетку с подмененным ядром стимулируют к дроблению (часто электрошоком) и помещают животным для вынашивания. Таким путем в 1997 г. в Шотландии от ядра диплоидной клетки из молочной железы овцы-донора появилась овечка Долли. Она стала первым клоном, искусственно полученным у млекопитающих. Именно этот случай был достижением Вильмута и его сотрудников.

7) С. С. Четвериков

В двадцатых годах возникли и стали развиваться мутационная и популяционная генетики. Популяционная генетика это область генетики, которая изучает основные факторы эволюции - наследственность, изменчивость и отбор - в конкретных условиях внешней среды, популяции. Основателем этого направления и был советский ученый Четвериков.

8) Н. К. Кольцов

В 30-е годы генетик этот учёный предположил, что хромосомы - это гигантские молекулы, предвосхитив тем самым появление нового направления в науке – молекулярной генетики.

9) Н. И. Вавилов

Советский ученый Вавилов установил, что у родственных растений возникают сходные мутационные изменения, например у пшеницы в окраске колоса, остистости. Эта закономерность объясняется сходным составом генов в хромосомах родственных видов. Открытие Вавилова получило название закона гомологических рядов. На основании его можно предвидеть появление тех или иных изменений у культурных растений.

10) И. В. Мичурин

Занимался гибридизацией яблонь. Благодаря этому, он вывел новый сорт Антоновка шестиграммовая. А его гибриды яблок нередко называют "Мичуринскими яблоками"

Примеры селекции живых организмов

В пушном деле большое значение имеет отбор естественных мутаций, отличающихся новой красивой окраской. Такой отбор очень быстро дает положительные результаты. Это можно показать на новых породах лисиц: серебристо-черной, платиновой и белой. Серебристо-черная лисица, которая была завезена в СССР в 1927 г., за 20 лет селекционной работы приобрела ряд свойств, отличающих ее от исходной формы. Платиновая лисица выведена путем отбора из группы серебристо-черных, имевших большое количество серебристых волос. У платиновой лисицы большие белые пятна развиты на груди, брюхе, лапах и морде.

Хорошим примером может служить выведенная академиком М.Ф.Ивановым порода свиней - украинская белая степная. При создании этой породы использовались свиноматки местных украинских свиней с небольшой массой и невысоким качеством мяса и сала, но хорошо приспособленных к местным условиям. Самцами- производителями были хряки белой английской породы. Гибридное потомство вновь было скрещено с английскими хряками, в нескольких поколениях применялся инбридинг, были созданы различные линии, при скрещивании которых получены родоначальники новой породы, которые по качеству мяса и массе не отличались от английской породы, а по выносливости – от украинских свиней.

Доказано, что вклад селекции в повышение в два раза урожайности основных сельскохозяйственных культур, достигнутое за последнюю четверть века в развитых странах, составляет около 50%. Так называемую "зеленую революцию" в земледелии Мексики, Индии и ряда других стран совершило внедрение низкорослых (с высотой стебля 100-110 см), полукарликовых (80-100 см) и карликовых (60-80 см) сортов риса, пшеницы и др. Они характеризуются нетолько высокой устойчивостью к полеганию, но и высокой продуктивностью колоса, главным образом за счет повышенного количества в нем зерновок. Такие сорта обеспечивают урожайность выше 60 ц/га. Производство пшеницы в Мексике и Индии с 1950 по 1970 г. возросло более чем в 8 раз; посевная площадь увеличилась вдвое, а урожай - вчетверо. Подобные сорта пшеницы созданы и в России (например, Донская полукарликовая и Мироновская низкорослая).


Список использованных источников

1. http://naexamen.ru/otvet/11/biol/600.shtml

2. http://www.biorg.ru/metodiselekcii.html

3. http://shkola.lv/index.php?mode=lsntheme&themeid=113

4. http://ru.wikipedia.org/wiki/Селекция

5. http://schools.keldysh.ru/school1413/pro_2005/per/Metan.htm

6. http://dic.academic.ru/dic.nsf/ruwiki/163134

7. http://sbio.info/page.php?id=39

8. http://www.beekeeping.orc.ru/Arhiv/a2007/n1007_10.htm

У растений оно осуществляется путем принудительного самоопыления перекрестноопыляющихся форм (инцухт ). У животных — это скрещивание особей, имеющих близкую степень родства и, следовательно, генетическое сходство. Инбридинг используется для получения чистых или гомозиготных линий. Сами по себе эти линии не обладают селективной ценностью, поскольку инбридинг сопровождается депрессией развития. Негативный эффект инбридинга объясняют переходом в гомозиготное состояние многих вредных рецессивных генов. Подобное явление, в частности, наблюдается у человека при родственных браках, на основании чего они запрещены. В то же время в природе существуют виды растений и животных, для которых автогамия является нормой (пшеница, ячмень, горох, фасоль), что можно объяснить, только предположив у них наличие механизма, препятствующего выщеплению вредных комбинаций генов.

В селекции инбредные линии растений и животных широко используются для получения межлинейных гибридов. Такие гибриды обладают ярко выраженным гетерозисом, в том числе и в отношении генеративной сферы. В частности, таким способом получают гибридные семена кукурузы, которыми засевают большую часть мировых площадей, отведенных под эту культуру.

На основе инцухта известным саратовским селекционером Е.М. Плачек был создан выдающийся сорт подсолнечника Саратовский 169.

Противоположностью инбридингу является аутбридинг — неродственное скрещивание организмов. Наряду с межпородным и межсортовым скрещиваниями, к нему относят также внутрипородное и внутрисортовое скрещивания, если родители не имели общих предков в 4-6 поколениях. Это наиболее распространенный тип скрещиваний, поскольку гибриды оказываются более жизнеспособными и устойчивыми к вредным воздействиям, т.е. проявляют ту или иную степень гетерозиса. Явление гетерозиса было впервые описано выдающимся немецким гибридизатором XVIII в. И. Кельрейтером. Однако природа этого явления до сих пор полностью не разгадана. Считают, что гетерозис обусловлен преимуществом гетерозиготного состояния по многим генам, а также большим числом благоприятных доминантных аллелей и их взаимодействием.

Существенным моментом, осложняющим использование гетерозиса в селекции, является его затухание в последующих поколениях. В связи с этим перед селекционерами стоит задача разработки способов закрепления гетерозиса у гибридов. Одним из них генетики считают перевод гибридных растений на апомиктичный способ размножения.

Еще одним типом скрещивания, которое используется в селекции, является отдаленная гибридизация . К ней относятся скрещивания между разновидностями, видами и родами. Скрещивание отдаленных в генетическом отношении форм затруднено из-за их несовместимости, которая может проявляться на разных уровнях. Например, у растений при отдаленной гибридизации может отсутствовать рост пыльцевых трубок на рыльце пестика, у животных препятствием могут служить несовпадение сроков размножения или различия в строении органов размножения. Тем не менее, несмотря на существование барьеров, межвидовая гибридизация осуществляется как в природе, так и в эксперименте. Для преодоления нескрещиваемости видов селекционеры разрабатывают специальные методы. Например, гибриды между кукурузой и ее апомиктичным дикорастущим сородичем — трипсакумом получают, укорачивая рыльца кукурузы до длины пыльцевых трубок трипсакума. При отдаленной гибридизации плодовых И.В. Мичуриным были разработаны такие методы преодоления нескрещиваемости, как метод предварительного вегетативного сближения (прививки), метод посредника, опыление смесью пыльцы разных видов и др. Например, чтобы получить гибрид персика с холодоустойчивым монгольским миндалем, он предварительно скрестил миндаль с полукультурным персиком Давида. Получив гибридный посредник, он скрестил его с персиком.

В 20-х гг. ХХ в. в Научно-исследовательском институте сельского хозяйства Юго-Востока в Саратове Г.К. Мейстером были получены первые пшенично-ржаные гибриды, которые высевались на довольно значительных площадях. Здесь же выдающимся селекционером А.П. Шехурдиным на основе скрещивания мягкой и твердой пшеницы получены высококачественные сорта мягкой пшеницы Саррубра, Сарроза, которые послужили донорами генов для других замечательных сортов и возделывались в Поволжье на огромных площадях. В 1930 г. Н.В. Цициным впервые в мире было осуществлено скрещивание пшеницы с пыреем, а вскоре С.М. Верушкиным были получены гибриды между пшеницей и элимусом. Уже к середине 30-х гг. саратовские ученые стали в нашей стране лидерами в области селекции пшеницы и подсолнечника. И в настоящее время сортами пшеницы и подсолнечника, выведенными саратовскими селекционерами, засеваются сотни тысяч гектаров. Созданный Н.Н. Салтыковой сорт твердой озимой пшеницы Янтарь Поволжья удостоен золотой и серебряной медалей ВВЦ.

Методом отдаленной гибридизации в разных странах были получены устойчивые к болезням и вредителям сорта картофеля, табака, хлопка, сахарного тростника.

Отрицательным моментом отдаленной гибридизации является частичная или полная стерильность отдаленных гибридов, вызываемая, в основном, нарушениями мейоза при образовании половых клеток. Нарушения могут возникать как при совпадении, так и при различии чисел хромосом у исходных форм. В первом случае причиной нарушений является отсутствие гомологии хромосомных наборов и нарушение процесса конъюгации, во втором — к этой причине добавляется также образование гамет с несбалансированными числами хромосом. Если даже такие гаметы являются жизнеспособными, то от их слияния в потомстве возникают анеуплоиды, которые часто оказываются нежизнеспособными и подвергаются элиминации. Например, при скрещивании 28-хромосомных и 42-хромосомных видов пшеницы образуются гибриды с 35-ю хромосомами. У гибридов F2 числа хромосом варьируют от 28 до 42. В последующих поколениях растения с несбалансированными числами постепенно элиминируются, и в конце концов остаются только две группы с родительскими кариотипами.

При отдаленной гибридизации в процессе становления гибридов идет формообразовательный процесс: образуются гибридные формы с новыми признаками. Например, в потомстве пшенично-пырейных гибридов появляются многоцветковые формы, ветвистые колосья и др. Эти формы, как правило, генетически неустойчивы, и для их стабилизации требуется длительный период времени. Однако именно отдаленная гибридизация позволяет селекционерам решать задачи, неразрешимые другими методами. Например, все сорта картофеля сильно поражаются различными болезнями и вредителями. Получить устойчивые сорта можно было, только позаимствовав это свойство у дикорастущих видов.

Обязательным этапом любого селекционного процесса, в том числе и с использованием метода гибридизации, является отбор , с помощью которого селекционер закрепляет признаки, необходимые для создания нового сорта или породы.

Ч. Дарвин различал два вида искусственного отбора: бессознательный и методический. На протяжении многих тысячелетий люди вели отбор бессознательно, отбирая лучшие экземпляры растений и животных по интересующим их признакам. Именно благодаря такому отбору были созданы все культурные растения.

При методическом отборе человек заранее ставит себе цель, какие признаки и в каком направлении он будет изменять. Эту форму отбора стали применять с конца XVIII в. и достигли выдающихся результатов в совершенствовании домашних животных и культурных растений.

Отбор может быть массовым и индивидуальным. Массовый отбор — более простой и доступный. При массовом отборе одновременно отбирается большое число особей популяции с нужным признаком, остальные выбраковываются. У растений семена всех отобранных особей объединяют и высевают на одном участке. Массовый отбор может быть однократным и многократным, что определяется, в первую очередь, способом опыления растений: у перекрестников отбор обычно ведется на протяжении нескольких поколений, пока не будет достигнута однородность потомства. Иногда отбор продолжается непрерывно, чтобы избежать потери ценных признаков. Массовым отбором создано большое количество старых сортов сельскохозяйственных растений, например, сорт гречихи Богатырь, созданный в начале ХХ в., и сейчас остается одним из лучших у этой культуры.

Метод индивидуального отбора более сложен и трудоемок, но гораздо более эффективен. Новый сорт при индивидуальном отборе создается из одного единственного элитного экземпляра. Метод предусматривает отбор в потомстве этого растения на протяжении ряда поколений, что делает процедуру создания сорта очень длительной.

Индивидуальный отбор широко используется в селекции животных. В этом случае используют метод проверки производителя по потомству, при которой генетическая ценность производителя определяется на основании качества потомства. Например, качество быков-производителей оценивается на основании продуктивности их дочерей. Другой способ оценки называется сибселекцией. В этом случае оценку производят по продуктивности родственных особей — братьев и сестер.

Наиболее эффективным будет отбор, который осуществляется на фоне среды, максимально выявляющей наследственные возможности организма. Нельзя вести отбор на засухоустойчивость во влажном климате. Часто отбор специально производится в искусственно созданных крайних условиях, т.е. на провокационном фоне.

Отбор и гибридизация являются традиционными методами селекции, которые длительное время играли основную роль в селекционных схемах. Однако успешное развитие генетики в ХХ в. привело к значительному обогащению арсенала селекционных методов. В частности, нашли свое место в селекционных схемах такие генетические явления, как полиплоидия, гаплоидия, цитоплазматическая мужская стерильность (ЦМС) .

Автополиплоиды у многих культур, например у ржи, клевера, мяты, турнепса, используются в качестве исходного материала для создания новых сортов. В ГДР и Швеции в I половине ХХ в. были получены тетраплоидные короткостебельные сорта ржи, имеющие более крупное зерно по сравнению с диплоидными сортами. Академиком Н.В. Цициным была создана тетраплоидная ветвистоколосая рожь, обладающая высокой продуктивностью. В.В. Сахаровым и А.Р. Жебраком получены крупносемянные, с большим содержанием нектара тетраплоидные формы гречихи.

На основе полиплоидии наибольшие результаты достигнуты в селекции сахарной свеклы. Созданы гибридные триплоидные сорта, которые сочетают высокую урожайность с повышенным содержанием сахара в корнеплодах. Одновременно созданы высокоурожайные тетраплоидные сорта и гибриды сахарной и кормовой свеклы. Японским генетиком Г. Кихарой путем скрещивания тетраплоидной и диплоидной форм арбуза был получен бессемянный арбуз, отличающийся высокой урожайностью и превосходными вкусовыми качествами.

В селекции ряда растений нашла применение и другая форма полиплоидии — аллополиплоидия . Аллополиплоиды — это межвидовые гибриды, у которых в два раза и более увеличен набор хромосом. При удвоении диплоидного набора хромосом гибрида, полученного от скрещивания двух разных видов или родов, образуются плодовитые тетраплоиды, которые называются амфидиплоидами. Им свойствен резко выраженный гетерозис, сохраняющийся в последующих поколениях. Амфидиплоидом, в частности, является новая зерновая культура — тритикале. Она получена В.Е. Писаревым путем скрещивания мягкой озимой пшеницы (2n = 42) с озимой рожью (2n = 14). Для удвоения набора хромосом у межродового 28-хромосомного гибрида использовалась обработка растений колхицином — клеточным ядом, блокирующим расхождение хромосом в мейозе. Полученные 56-хромосомные амфидиплоиды тритикале характеризуются высоким содержанием белка, лизина, крупным колосом, быстрым ростом, повышенной устойчивостью к болезням, зимостойкостью. Еще большую селекционную ценность имеют 42-хромосомные Triticale. Они еще более продуктивны и устойчивы к вредным воздействиям.

Использование для искусственного получения полиплоидов колхицина произвело подлинную революцию в области экспериментальной полиплоидии. С его помощью триплоидные и тетраплоидные формы получены более чем у 500 видов растений. Полиплоидизирующим эффектом обладают также некоторые дозы ионизирующих излучений.

Использование явления гаплоидии открыло большие перспективы в области разработки технологии для быстрого создания гомозиготных линий путем удвоения у гаплоидов набора хромосом. Частота спонтанной гаплоидии у растений очень низкая (у кукурузы — один гаплоид на тысячу диплоидов), в связи с чем разработаны способы массового получения гаплоидов. Одним из них является получение гаплоидов через культуру пыльников. Пыльники на стадии микроспор высаживают на искусственную питательную среду, содержащую стимуляторы роста — цитокинины и ауксины. Из микроспор образуются зародышеподобные структуры — эмбриоиды с гаплоидным числом хромосом. Из них в дальнейшем развиваются проростки, дающие после пересадки на новую среду нормальные гаплоидные растения. Иногда развитие сопровождается образованием каллуса с очагами морфогенеза. После пересадки на оптимальную среду из них также формируются эмбриоиды и проростки, вырастающие в нормальные гаплоидные растения.

Путем создания из гаплоидов гомозиготных диплоидных линий и их скрещивания получены ценные гибридные сорта кукурузы, пшеницы, ячменя, рапса, табака и других культур. Использование гаплоидов позволяет сократить срок создания гомозиготных линий в 2-3 раза.

В селекционных схемах по производству гибридных семян кукурузы, пшеницы и ряда других культур использовано явление ЦМС, что позволило упростить и удешевить этот процесс, т.к. была устранена ручная процедура кастрации мужских соцветий при получении гибридов F 1 .

Использование новейших достижений генетики и создание эффективных технологий позволило во много раз повысить продуктивность сортов культурных растений. В 70-х гг. появился термин “зеленая революция“, который отразил значительный скачок в урожайности важнейших сельскохозяйственных культур, достигнутый с помощью новых технологий. По расчетам экономистов вклад генетических методов в прибавку урожая составил 50%. Остальное приходится на использование усовершенствованных приемов обработки земли и достижений агрохимии. Внедрение сложных технологий привело к масштабному культивированию отдельных видов ограниченного числа культур. Это вызвало проблемы, связанные с болезнями и эпидемиями в результате поражения растений разными вредителями. Именно устойчивость растений к этим вредным факторам вышла на первое место в списке признаков для отбора.

Называют науку о создании качественно новых и улучшении уже существующих сортов культурных растений. В основе селекции находятся ее главные методы - отбор и гибридизация. селекции - наука генетика.

Особенности селекции растений обусловлены успешным решением задач, которые перед ней стоят. Очень значимо изучение сортового, родового и видового разнообразия культур, влияния окружающей среды на развитие главных признаков, закономерностей наследования этих признаков для гибридизации, а также особенностей процесса селекции и стратегии искусственного отбора.

Каждый сорт растений приспособлен к каким-то определенным условиям, и поэтому в разных местностях существуют разные специализированные станции и племенные хозяйства для проверки и сравнения новых сортов растений.

Чтобы селекция растений была успешной, селекционер должен располагать сортовым разнообразием исходного материала. Ученый Н.И. Вавилов в свое время собрал огромную коллекцию сортов растений и их предков со всей планеты Земля, которая сегодня успешно пополняется и считается основой для работ по селекции любой культуры.

Н. И. Вавилов выделяет семь центров происхождения растительных культур: южноазиатский тропический, восточноазиатский, средиземноморский, юго-западноазиатский, абиссинский, южноамериканский, центральноамериканский. Самые богатые области по количеству культур - древние центры цивилизации. В таких местах наиболее ранняя культура земледелия, соответственно, и селекция растений, и искусственный отбор проводятся более длительное время. Рассмотрим более подробно, что собой являет это понятие.

Существуют определенные методы селекции растений: отбор и гибридизация. Отбор свою очередь может быть индивидуальным и массовым.

Называют форму искусственного отбора, которая применяется при селекции так называемых «перекрестноопыляемых» растений (ржи, кукурузы, подсолнечника). В данном случае сорт являет собой популяцию, которая состоит из гетерозиготных особей, где каждое семя несет в себе уникальный генотип. Благодаря массовому отбору сохраняются и совершенствуются сортовые характеристики, однако результаты такого отбора очень неустойчивы из-за неопределенного перекрестного опыления.

Индивидуальный отбор применяется при селекции растений, которые опыляются самостоятельно (ячмень, пшеница). Потомство сохраняет все без исключения признаки родительской формы и носит название чистой линии (так называют потомство одной самоопыленной гомозиготной особи). Так как происходят постоянно, по сути, гомозиготные особи встречаются крайне редко. Под контроль искусственного и они попадают только после перехода в гомозиготное состояние.

Селекция растений по методу естественного отбора играет очень важную роль. Любое растение на протяжении своей жизни находится под влиянием определенных внешних факторов, поэтому оно должно быть устойчивым к болезням и вредителям, приспособленным к водному и температурному режиму.

Инбридинг - близкородственное скрещивание. Это явление имеет место у перекрестноопыляемых растений при самоопылении. Для этого метода селекции подбираются такие растения, гибриды которых способны дать максимальный эффект гетерозиса. Такие растения много лет подвержены принудительному самоопылению.

Существует также такой метод, как отдаленная гибридизация. Так называют скрещивание растений, которые относятся к разным видам. Как правило, отдаленные гибриды стерильны, поэтому гаметы не образуются.

Селекция растений располагает также такими методами, как использование экспериментальный мутагенез, а также методами селекции, предложенными И.В. Мичуриным. Об этих и других методах можно узнать более подробно, прочитав работы вышеупомянутых ученых.