Альтернативные источники энергии

Какие виды динамометра существуют. Динамометры и сферы их использования

Какие виды динамометра существуют. Динамометры и сферы их использования

Динамометр – это прибор, с помощью которого можно определить силу человеческих мышц и на основе полученных результатов сделать вывод о состоянии здоровья пациента или физической подготовки спортсмена.

Виды динамометров

В основе конструкции любого динамометра лежат силовая и отсчетная составляющие. Прикладывая усилие для деформации силовой части, человек может видеть на отсчетном устройстве результат, измеряемый в международных единицах измерения силы – Ньютонах (Н).

Среди наиболее часто используемых динамометров по силовым составляющим различают:

  • механический пружинный (силовая составляющая – пружина);
  • механический рычажный (усилие передается с помощью рычага);
  • гидравлический (сила измеряется количеством выдавленной из гидроцилиндра жидкости);
  • электронный (система датчиков, фиксирующая преобразованную в электрический сигнал силу).


Результаты, полученные с помощью механических версий измерительного прибора, могут быть неточными и колеблются в зависимости от температуры. Это одни из первых версий устройств, которые практически не изменились после многочисленных модернизаций.

Гидравлический намного точнее, но и значительно дороже механических динамометров. Причина этого заключается в сложности производства, где точность дозирования и качество герметичности играют ключевую роль.

Электрический динамометр – наиболее совершенный, компактный и точный современный измерительный прибор.

Вариативность зависит от типа датчика, но принцип работы у всех моделей один и тот же: приложенное усилие деформирует датчик, провоцируя тем самым повышение его сопротивления. Меняется ток – меняются показания, снимаемые считывающей их составляющей.

По назначению различают динамометры:

Ручной или кистевой — предназначен для измерения силы пальцев рук. Встречаются механические и электронные варианты.


Становой — предназначен для тестирования мышц корпуса тела и представлен в виде конструкции из подставки под ноги, троса, измерительного прибора и отсчитывающего устройства. Фото динамометров наглядно демонстрируют различия между вышеописанными моделями.

Маркировка

Человеку, знающему, какие есть динамометры, выбрать нужный легко. Для тех же, кто сталкивается с необходимостью приобретения впервые, будет полезным умение читать двухкомпонентную маркировку динамометров.

Первая часть маркировки состоит из буквенной аббревиатуры, расшифровав которую можно узнать о его назначении. Среди линеек динамометров российских производителей наиболее распространены: ДК (динамометр кистевой), ДМЭР (динамометр электронный ручной) и ДС (динамометр становой).

Вторая часть маркировки – цифровое обозначение. Это верхняя граница диапазона измерений силы динамометром. Так, например, ДМЭР-120 позволяет проводить измерения силы до 120 даН (12000 ньютон).

Тонкости вычислений

Поскольку абсолютные показатели получать довольно-таки проблематично, то внимание стоит обращать на величину относительной силы. Ее рассчитывают методом умножения полученного результата на 100, с последующим делением произведения на вес тестируемого человека.

Для здоровых людей, не увлекающихся спортом, нормальными считаются следующие индексы:

  • для женщин: кистевой индекс 45-50, становой 200;
  • для мужчин: кистевой 60-70, становой 230.

Отклонения в меньшую сторону свидетельствуют о физической слабости, вызванной болезнью или пассивным образом жизни. Отклонения в большую сторону свидетельствуют об отменном состоянии мышц опорно-двигательного аппарата и характерны для тех, кто не пренебрегает физическими нагрузками.


При проведении измерения динамометром следует помнить о некоторых нюансах, влияющих на конечный результат. За исключением возраста и состояния здоровья на итоговые значения, полученные в процессе замера силы, влияют так же общее психологическое состояние и время суток.

Так, замечено, что наилучшие результаты достигаются при проведении измерения силы в середине дня (утром и вечером значения ниже), а при психологической подавленности (стресс, усталость) показатели снижаются.

Поэтому, если измерения силы с помощью динамометра проводятся с целью проверки прогресса, то лучше всего их проводить в одно и то же время суток.

Фото динамометра

Нам уже известно, что для описания взаимодействия тел используется физическая величина, называемая силой. На этом уроке мы подробнее познакомимся со свойствами этой величины, единицами силы и прибором, который используется для ее измерения - с динамометром.

Тема: Взаимодействие тел

Урок: Единицы силы. Динамометр

Прежде всего, вспомним, что такое сила. Когда на тело действует другое тело, физики говорят, что со стороны другого тела на данное тело действует сила.

Сила - это физическая величина, характеризующая действие одного тела на другое.

Сила обозначается латинской буквой F , а единица силы в честь английского физика Исаака Ньютона называется ньютоном (пишем с маленькой буквы!) и обозначается Н (пишем заглавную букву, так как единица названа в честь ученого). Итак,

Наравне с ньютоном, используются кратные и дольные единицы силы:

килоньютон 1 кН = 1000 Н;

меганьютон 1 МН = 1000000 Н;

миллиньютон 1 мН = 0,001 Н;

микроньютон 1 мкН = 0,000001 Н и т. д.

Под действием силы скорость тела изменяется. Другими словами, тело начинает двигаться не равномерно, а ускоренно. Точнее, равноускоренно : за равные промежутки времени скорость тела меняется одинаково. Именно изменение скорости тела под действием силы физики используют для определения единицы силы в 1 Н.

Единицы измерения новых физических величин выражают через так называемые основные единицы - единицы массы, длины, времени. В системе СИ - это килограмм, метр и секунда.

Пусть под действием некоторой силы скорость тела массой 1 кг изменяет свою скорость на 1 м/с за каждую секунду . Именно такая сила и принимается за 1 ньютон .

Один ньютон (1 Н) - это сила, под действием которой тело массой 1 кг изменяет свою скорость на 1 м/с каждую секунду.

Экспериментально установлено, что сила тяжести, действующая вблизи поверхности Земли на тело массой 102 г, равна 1 Н. Масса 102 г составляет приблизительно 1/10 кг, или, если быть более точным,

Но это означает, что на тело массой 1 кг, то есть на тело в 9,8 раз большей массы, у поверхности Земли будет действовать сила тяжести 9,8 Н. Таким образом, чтобы найти силу тяжести, действующую на тело любой массы, нужно значение массы (в кг) умножить на коэффициент, который принято обозначать буквой g :

Мы видим, что этот коэффициент численно равен силе тяжести, которая действует на тело массой 1 кг. Он носит название ускорение свободного падения . Происхождение названия тесно связано с определением силы в 1 ньютон. Ведь если на тело массой 1 кг действует сила не 1 Н, а 9,8 Н, то под действием этой силы тело будет изменять свою скорость (ускоряться) не на 1 м/с, а на 9,8 м/с каждую секунду. В старшей школе этот вопрос будет рассмотрен более подробно.

Теперь можно записать формулу, позволяющую рассчитать силу тяжести, действующую на тело произвольной массы m (Рис. 1).

Рис. 1. Формула для расчета силы тяжести

Следует знать, что ускорение свободного падения равно 9,8 Н/кг только у поверхности Земли и с высотой уменьшается. Например, на высоте 6400 км над Землей оно меньше в 4 раза. Однако при решении задач этой зависимостью мы будем пренебрегать. Кроме того, на Луне и других небесных телах также действует сила тяжести, и на каждом небесном теле ускорение свободного падения имеет свое значение.

На практике часто приходится измерять силу. Для этого используется устройство, которое называется динамометр. Основой динамометра является пружина, к которой прикладывают измеряемую силу. Каждый динамометр, помимо пружины, имеет шкалу, на которую нанесены значения силы. Один из концов пружины снабжен стрелкой, которая указывает на шкале, какая сила приложена к динамометру (Рис. 2).

Рис. 2. Устройство динамометра

В зависимости от упругих свойств пружины, использованной в динамометре (от ее жесткости), под действием одной и той же силы пружина может удлиняться больше или меньше. Это позволяет изготавливать динамометры с различными пределами измерения (Рис. 3).

Рис. 3. Динамометры с пределами измерения 2 Н и 1 Н

Существуют динамометры с пределом измерения в несколько килоньютонов и больше. В них используется пружина с очень большой жесткостью (Рис. 4).

Рис. 4. Динамометр с пределом измерения 2 кН

Если подвесить к динамометру груз, то по показаниям динамометра можно определить массу груза. Например, если динамометр с подвешенным к нему грузом показывает силу 1 Н, значит, масса груза равна 102 г.

Обратим внимание на то, что сила имеет не только численное значение, но и направление. Такие величины называют векторными. Например, скорость - это векторная величина. Сила - также векторная величина (говорят еще, что сила - вектор).

Рассмотрим следующий пример:

Тело массой 2 кг подвешено на пружине. Необходимо изобразить силу тяжести, с которой Земля притягивает это тело, и вес тела.

Вспомним, что сила тяжести действует на тело, а вес - это сила, с которой тело действует на подвес. Если подвес неподвижен, то численное значение и направление веса такие же, как у силы тяжести. Вес, как и сила тяжести, рассчитываются по формуле, изображенной на рис. 1. Массу 2 кг необходимо умножить на ускорение свободного падения 9,8 Н/кг. При не слишком точных расчетах часто ускорение свободного падения принимают равным 10 Н/кг. Тогда сила тяжести и вес приблизительно будут равны 20 Н.

Для изображения векторов силы тяжести и веса на рисунке необходимо выбрать и показать на рисунке масштаб в виде отрезка, соответствующего определенному значению силы (например, 10 Н).

Тело на рисунке изобразим в виде шара. Точка приложения силы тяжести - центр этого шара. Силу изобразим в виде стрелки, начало которой расположено в точке приложения силы. Стрелку направим вертикально вниз, так как сила тяжести направлена к центру Земли. Длина стрелки, в соответствии с выбранным масштабом, равна двум отрезкам. Рядом со стрелкой изображаем букву , которой обозначается сила тяжести. Так как на чертеже мы указали направление силы, то над буквой ставится маленькая стрелка, чтобы подчеркнуть, что мы изображаем векторную величину.

Поскольку вес тела приложен к подвесу, начало стрелки, изображающей вес, помещаем в нижней части подвеса. При изображении также соблюдаем масштаб. Рядом помещаем букву , обозначающую вес, не забывая над буквой поместить небольшую стрелку.

Полное решение задачи будет выглядеть так (Рис. 5).

Рис. 5. Оформленное решение задачи

Еще раз обратите внимание на то, что в рассмотренной выше задаче численные значения и направления силы тяжести и веса оказались одинаковыми, а точки приложения - различными.

При расчете и изображении любой силы необходимо учитывать три фактора:

· численное значение (модуль) силы;

· направление силы;

· точку приложения силы.

Сила - физическая величина, описывающая действие одного тела на другое. Обычно она обозначается буквой F . Единица измерения силы - ньютон. Для того чтобы рассчитать значение силы тяжести, необходимо знать ускорение свободного падения, которое у поверхности Земли составляет 9,8 Н/кг. С такой силой Земля притягивает к себе тело массой 1 кг. При изображении силы необходимо учитывать ее числовое значение, направление и точку приложения.

Список литературы

  1. Перышкин А. В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  2. Перышкин А. В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  3. Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  1. Единая коллекция цифровых образовательных ресурсов ().
  2. Единая коллекция цифровых образовательных ресурсов ().
  3. Единая коллекция цифровых образовательных ресурсов ().

Домашнее задание

  1. Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7-9 классов №327, 335-338, 351.

Приборы и устройства, предназначенные для измерения сил или момента, имеют общее название - динамометры (см. на http://tpmarket.ru).

Группа данных технических устройств является достаточно многочисленной, однако их отличает конструкция, разнообразие условий применения и принцип действия. В конструкцию динамометров входит отсчетное устройство и силовое звено (упругий элемент).

Силовым звеном измеряемое усилие преобразуется в деформацию, сообщаемую посредством передачи или непосредственно отсчетному устройству.

Основываясь на принципе действия, различают гидравлические, электронные и механические (рычажные или пружинные) устройства. В некоторых динамометрах применяются сразу несколько различных принципов работы.

В свою очередь по конструктивному исполнению их можно подразделить на механические и электронные приборы.

Научно-технический прогресс преобразует абсолютно все области человеческой деятельности, поэтапно приводя к появлению все новых разновидностей привычных устройств и приборов.

Традиционные механические динамометры с течением времени уступили свое место электронным, в составе которых включены тензодатчик (датчик силы), измерительный индикатор и соединительный провод (радиоканал).

Принцип работы электронного динамометра основывается на деформации тензометрического датчика при воздействии прикладываемой силы, вследствие чего на выходе появляется электрический сигнал, который является прямо пропорциональным сообщенной деформации.

Данные приборы применяются для периодической поверки испытательных машин и стендов в различных отраслях промышленности.

При этом чрезвычайно востребованным является производство динамометров, которые предназначены для прецизионного определения не только медленно изменяющихся, но и статических сил растяжения и сжатия.

Подобный динамометр сжатия и растяжения может быть представлен измерительными приборами СИУ2 и СИУ. Они используются на промышленных предприятиях для самых различных целей: периодической проверки испытательных машин и стендов, для калибровки и поверке, выступая в роли эталонного средства измерений.

В целом на сегодняшний день измерительный динамометр находит свое применение в следующих сферах:

1. Широко используются на всевозможных промышленных предприятиях, где возникает необходимость в различных силовых измерениях;

2. Применяются для осуществления плановых поверок стендов и агрегатов испытательного назначения;

3. Незаменимы при поверке силовых приборов для определения силы 1 и 3 разрядов (как эталонное средство для соответствия ГОСТ 8.065) и во время произведения калибровки.

Динамометр представляет собой специальное устройство, предназначенное для измерения показателей силы или получения параметров момента действующей силы. Этот измерительный прибор способен определить усилие либо силу, с которой один объект действует на другой. Такое воздействие можно встретить повсеместно: это двери лифтов, троллейбуса, метро, ворот и тому подобное.

Необходимо отметить, что первым устройством, которое применялось для измерения силы, являлись весы. Впервые такие весы появились в 1726 году. Через столетие Ричард Солтер создал прибор, в котором применялась пружина с целью измерения воздействия силы. Благодаря грузу она растягивалась на некоторое расстояние, которое соответствовало его массе. Спустя некоторое время Ренье создал устройство, на котором имелся циферблат. В нем применялась кольцеобразная замкнутая пружина. Затем стали появляться конструкции других изобретателей в лице Томсона, Броуна и так далее. Современное устройство по своей конструкции недалеко ушли от этих приборов.

Виды

Динамометр может иметь разные конструкции, которые довольно сильно различаются по предназначению, исполнению, функциям, диапазону измерений и тому подобное. Данные устройства можно разделить по измеряемым усилиям, то есть их можно классифицировать по диапазону измерения: от долей ньютонов до 20 тысяч ньютонов. Если говорить о принципе действия, то данные приборы могут быть различного действия в зависимости от их конструктивного исполнения. При этом в некоторых устройствах могут применяться сразу несколько принципов действия.

Механические подразделяются на изделия рычажного и пружинного действия. Особенность пружинного прибора в том, что сила воздействует на пружину, вследствие чего она может растягиваться или сжиматься, что в свою очередь определяется направленностью приложения силового фактора. Пружина обладает упругостью, которая находится в прямой пропорциональности от приложенной силы, которую необходимо измерить. Поэтому ее можно определить и зафиксировать. При использовании рычажного устройства сила направлена на деформирование рычага, что в свою очередь позволяет определить ее параметры.

Электронное оснащается цифровым дисплеем, где высвечивается информация о прикладываемой силе. В этих устройствах основополагающим элементом является датчик. Его функции это преобразование деформации от действия силы в электросигнал. Он также имеет дополнительный датчик, усиливающий основной сигнал, идущий от первого датчика. С целью преобразования деформационного действия применяются разнообразные датчики сопротивления, которые построены на индуктивном, тензорезистивном, пьезоэлектрическом и частотном принципе действия.

В гидравлических устройствах применяется специальный цилиндр, в котором находится рабочая жидкость. Если внешняя сила оказывает определенное воздействие, то находящаяся в цилиндре жидкость выходит из него. В результате сила определяется объемом вытесненной жидкости. Данный объем находится в прямой зависимости от приложенной силы, что позволяет достаточно точно определить искомый параметр.

В зависимости от сферы применения могут быть и специфические устройства, позволяющие измерять силу воздействия, к примеру, медицинские. Такие устройства позволяют определить силу, степень функционирования мышц, выносливость, в том числе дают возможность следить за состоянием и восстановлением больного после получения травмы.

В отдельную категорию можно выделить кистевое устройство, при помощи него диагностируется сжимающая сила рук вследствие нарушения их функционирования. Тесты с применением данного устройства используются не только в медицинских целях, но также во многих организациях: это правоохранительные органы, Министерство чрезвычайных ситуаций, вооруженные силы, экспедиторские компании, организация боевых единоборств и профессионального спорта. Становое устройство применяется с целью определения сил мышц, которые предназначены для выпрямления туловища человека.

Образцовый динамометр представляет собой эталон, применяемый для определения сил в статике, чаще всего сил сжатия и растяжения во время ремонта испытательных устройств и установок. Данные приборы имеют малую зависимость от температуры окружающей среды. Их конструкция более сложна, что вызвано необходимостью получения независимости от внешних факторов. Так у них предусмотрена автоматическая компенсация искажений и имеются средства самодиагностики. Они обладают малыми габаритами, точностью и долговечностью. Для удобства пользования данные приборы имеют цифровую индикацию, удобный интерфейс и возможность подключения к персональному компьютеру.


Устройство

В большинстве случаев данные приборы имеют схожее устройство и принцип действия. Но все определяется конструкцией устройства.

Самый примитивный динамометримеет следующее устройство:
  • Корпус или основание, которое выполнено из пластмассы, дерева или иного материала.
  • Шкала, которая нанесена на основание.
  • Пружина из стали, которая с разных сторон имеет крючок и указатель.

При помощи крючка пружина крепится к основанию. Такое устройство очень просто в изготовлении, поэтому собрать его может любой человек, который знаком с основами физики. К примеру, для этого можно взять картонку, из которой следует вырезать основание размером 15 на 7 см. Далее потребуется пружина из металла диаметром проволоки 0,3-0,5 мм. Проволоку необходимо согнуть с одной стороны для закрепления к основанию. Для этого можно воспользоваться скотчем или степлером. С другой концы пружины следует сделать крючок.

Чтобы правильно нанести шкалу, потребуются небольшие мерные грузики. При помощи них на шкале проставляются данные по их весу, то есть на сколько пружина растягиваться, на такой длине и выставляются цифры. В результате появляется зависимость расставленных цифр на шкале от силы, которая прикладывается. Это значит, что можно измерить другую силу, которая будет приложена к пружине.

В электрических устройствах установлены пьезоэлектрические и т.п. датчики, которые работают посредством преобразования механической энергии в электрические сигналы. Данные сигналы усиливаются и фиксируются при помощи какого-либо элемента. К примеру, может быть использована шкала или цифровая индикация. Для возможности работы датчиков и цифровых устройств используются , или электрическая сеть.

Принцип действия

Принцип работы электрических устройств основан на том, что датчик испытывает определенную деформацию, вследствие чего происходит изменение токов сопротивления. В результате электросигнал находится в прямой зависимости от деформации элемента. Дополнительному датчику лишь необходимо усилить сигнал и записать его, чтобы можно было снять параметры прикладываемой силы.

Динамометр механического действия работает несколько иначе. Главная его особенность в том, что при приложении силы пружина подвергается деформационному воздействию. Благодаря такому свойству можно измерить параметры деформационного воздействия, то есть силу, которая прикладывается к ней.

Гидравлические приборы способны демонстрировать более высокую точность, однако и конструкция у них более сложная. Принцип работы подобного устройства базируется на перемещении жидкости, расположенной в резервуаре, в момент приложения силы. Жидкость, которая была вытеснена по трубке, направляется к прибору, который и фиксирует ее объем.

Применение

Динамометрпружинного типа часто применяется с целью определения массы всевозможных грузов. Также их используют для определения показателей прочности сварочных швов и других соединений.

Динамометр может применяться для получения точных данных, параметров сил, к примеру:
  • Тяговых усилий.
  • Напряжения мышц.
  • Упругости.
  • Тяжести.
  • Трения.
  • для ремонта, поверки различных приборов и их калибровки.

Благодаря их функциональности приборы можно использовать в медицинских, строительных, промышленных и во многих других целях. Некоторые модели устройств способны измерять силу, которая может достигать 20 тысяч ньютонов.

Как выбрать

  • В первую очередь необходимо определиться с тем, для каких целей вы собираетесь использовать динамометр. Модели могут быть разными по конструкции и по исполнению, и предназначены для измерения разных диапазонов сил.
  • Присмотритесь к функционалу устройств. Конечно, дополнительный функционал может добавить стоимости изделию, однако позволит прибавить удобство использования и большую точность определения сил. Это могут быть цифровая индикация, радиоканалы, usb и другие дополнительные элементы.
  • Если вам нужно медицинское устройство, то лучше всего посоветоваться с лечащим врачом. Он предложит вам необходимую модель, чтобы вы не нанесли себе дополнительную травму и смогли быстрее восстановиться.
  • Если устройство приобретается для специализированных целей, то прибор необходимо выбирать с учетом требований той сферы, где он будет применяться. Если это высокоточный прибор, то он будет требовать периодической проверки и систематического обслуживания. К примеру, лабораторные изделия нужно периодически подвергать поверочным мероприятиям, в частности отправляя их в лицензированные учреждения.

Что такое динамометр

Динамометр (от греческого слова "динамис" - сила) - это прибор для измерения силы.

Существуют различные конструкции динамометров. Силу тяги тракторов, тягачей, буксиров и т. д. измеряют с помощью тяговых динамометров (рис. 35).

Для измерения мышечной силы руки используют медицинский динамометр - силомер (рис. 36).

На рисунке 37 изображен учебный пружинный динамометр , рассчитанный на измерение сил до 4 Н. Он состоит из стальной пружины с указателем и крючком, прикрепленной к пластмассовому (в старых конструкциях к деревянному) основанию, на которое нанесена шкала (буква "N" на шкале динамометра - это международное обозначение ньютона).

Рисунок 35, 36, 37, 38. Различные виды динамометров.
Действие пружинного динамометра основано на уравновешивании измеряемой силы силой упругости пружины.

Градуирование пружины динамометра (т. е. создание шкалы с делениями) можно осуществить следующим образом. К основанию динамометра (под пружиной) прикрепляют полоску белой бумаги. Затем отмечают положение указателя при нерастянутой пружине - это нулевое деление (рис. 38, а). После этого к крючку подвешивают груз массой 102 г. На этот груз действует сила тяжести 1 Н. Под действием этого груза пружина растягивается и указатель перемещается вниз. В положении равновесия сила тяжести, действующая на груз, уравновешивается противоположно направленной силой упругости.

Следовательно, растяжение пружины при этом будет соответствовать силе упругости, также равной 1 Н. Поэтому новое положение указателя отмечают на бумаге цифрой 1 (рис. 38,6).

Затем к первому грузу подвешивают еще один такой же, увеличивая тем самым общую массу до 204 г, а силу тяжести - до 2 Н. Соответствующее положение указателя отмечают цифрой 2. После этого прикрепляют третий, а затем четвертый груз, каждый раз отмечая положение указателя соответствующей цифрой.

Для того чтобы можно было измерять десятые доли ньютона, каждое из расстояний между отметками 0 и 1, 1 и 2, 2 и 3, 3 и 4 делят на десять равных частей. Такое построение шкалы возможно благодаря закону Гука , из которого следует, что сила упругости пружины увеличивается во столько же раз, во сколько раз увеличивается ее удлинение.

Динамометр можно применять и для измерения веса тела.

Весом тела называют силу, с которой оно давит на горизонтальную опору или растягивает вертикальный подвес.
Р - вес тела.
Если к вертикально расположенному пружинному динамометру прикрепить груз, то после того, как груз растянет пружину и остановится, на крючок динамометра будут действовать две силы: сила упругости пружины F упр и вес груза Р. Эти силы будут противоположны по направлению, но равны по величине. Поэтому динамометр позволяет измерить не только силу упругости (и равную ей силу тяжести груза), но и вес тела Р.

Вес покоящегося, а также равномерно и прямолинейно движущегося (относительно Земли) тела равен действующей на него силе тяжести:
P = mg

Несмотря на совпадение формул, между силой тяжести и весом тела есть существенное различие. Сила тяжести приложена к телу, на которое действует Земля, а вес тела приложен к подвесу или опоре, на которую это тело давит. Если обе эти силы изобразить в виде стрелок, указывающих их направление (а направлены эти силы вертикально вниз), то это будет выглядеть так, как показано на рисунке 39.

Рисунок 39. Изображение силы тяжести и силы, приложенной к опоре (веса тела).

Вес тела не следует путать с его массой. Масса тела измеряется в килограммах, а вес тела (как и любая другая сила в физике) - в ньютонах. Вес тела имеет направление, а масса никакого направления не имеет.

Виды динамометров

Из изученной темы на сегодняшнем уроке мы с вами узнали, что такое динамометр и что он применяются для измерения силы либо момента силы.

Такой прибор, как динамометр имеет упругий элемент, который состоит из силового звена и отсчетного устройства. Во время измерения измеряемое усиление в силовом звене динамометра влечет за собой деформацию, которая с помощью передачи либо же непосредственно несет информацию отсчетному устройству.

При помощи динамометра можно измерить различные усилия, начиная от долей ньютонов и до 1 Мн (100 тс).

А теперь давайте более подробно остановимся и узнаем, какие бывают виды динамометров и где они применяются.

По своему принципу действия динамометры делятся на:

Электронные;
механические;
гидравлические.

Механические динамометры в свою очередь бывают пружинные и рычажные.

Механический динамометр

Самым известным, простым и часто используемым является механический динамометр. Также мы с вами уже знаем, что такой динамометры делятся на пружинный и рычажный.

К пружинному динамометру относят такой прибор, в котором происходит воздействие силы на пружину. Пружина в этом случае имеет свойство растягиваться или сжиматься. Если быть более точным, то можно сказать, что в этом случае принцип работы можно определить с помощью закона Гука. Примером механического динамометра может служить известный каждому безмен.



В отличие от пружинного динамометра, рычажный имеет еще меньшую точность и сильно зависит от таких внешних условий, как температура.

Гидравлический динамометр



Но не во всех случаях удобно использовать механические динамометры. Вот, например, при взаимоотношении с жидкостями лучше будет использовать гидравлические динамометры, так как в этом случае причина кроется в возникновении давления, выталкивающего жидкость из сосуда, где фиксируется с помощью специального аппарата количество поступающей жидкости.

У гидравлического динамометра также имеются свои недостатки. Этот аппарат имеет довольно таки сложную конструкцию, обладает невысокой точностью и также подвергается внешним воздействиям окружающей среды.

Электрический динамометр



В отличие от механических динамометров, которые имеют довольно таки простую конструкцию, электрический динамометр появился не так давно и существует всего насколько десятилетий. Его основными элементами являются датчики, с помощью которых происходит анализ данных показаний деформации под действием силы с помощью преобразования данных в электрический сигнал, обработки сигнала и его записи в память прибора.

В наше время этот вид динамометра является самым популярным и часто употребляемым. Преимуществом этого прибора является его небольшой размер и небольшая зависимость от изменений внешних воздействий.

Но кроме уже перечисленных видов динамометров существуют и другие их классификации, которые применяются по назначению. К этим видам приборов можно отнести и такой важный прибор, как медицинский динамометр.

С помощью кистевого динамометра можно определить состояние человеческих мышц и узнать о физической форме человека. Такой аппарат просто необходим при реабилитации человека после травмы и чтобы, осуществлять контроль над восстановительными процессами.

И хотя различные динамометры имеют свои плюсы и минусы, но каждый из них находит свое применение. Ведь, если механический динамометр на производстве и не совсем удобен, то для использования в быту он незаменим, благодаря своей простоте и наглядности. Но, конечно же, самым употребляемым все же, остается электрический динамометр, хотя и имеет довольно таки сложную конструкцию.

Вопросы

1. Что такое динамометр?
2. На чем основано действие пружинного динамометра?
3. Что называют весом тела?
4. По какой формуле находится вес покоящегося тела?
5. Чем отличается вес тела от силы тяжести и массы тела?