Альтернативные источники энергии

Как устроен датчик. Бесконтактные датчики

Как устроен датчик. Бесконтактные датчики

Пассивные – потому что датчики сами не излучают, а только воспринимают излучение с длиной волны от 7 до 14 μм.

Принцип работы PIR-датчиков

Человек излучает тепло. Его тепловое изображение в инфракрасных лучах показывает распределение температуры по поверхности тела. Более нагретые предметы выглядят светлее, более холодные – темнее, т.к. излучают меньше тепла.

PIR-датчик содержит чувствительный элемент, который реагирует на изменение теплового излучения. Если оно остается постоянным – электрический сигнал не генерируется.

Для того, чтобы датчик среагировал на движение, применяют специальные линзы (линзы Френеля) с несколькими фокусирующими участками, которые разбивают общую тепловую картину на активные и пассивные зоны, расположенные в шахматном порядке. Человек, находясь в сфере работы датчика, занимает несколько активных зон полностью или частично.

Поэтому, даже при минимальном движении происходит перемещение из одних активных зон в другие, что вызывает срабатывание датчика. Фоновая тепловая картина, как правило, меняется очень медленно и равномерно. Датчик на нее не реагирует. Высокая плотность активных и пассивных зон позволяет датчику надежно определить присутствие человека даже при малейшем движении.

Определение присутствия

Качественные датчики (например HTS) срабатывают не только на значительные перемещения, но и на незначительные при сидячей работе за письменным столом. Это достигается оптимизацией всех подсистем датчика.

Принцип работы соответствует принципу работы датчика движения. Большое количество активных зон однородно расположенных, а также высокая чувствительность, делают возможным определение малейших движений и реагирование на минимальные изменения тепловой картины.

Датчик присутствия нуждается в свободном обзоре определяемого объекта, т.к. тепловое излучение не проникнет через стены и двери, а также, через стеклянные перегородки.

Выбор датчика

Для корректного выбора датчика присутствия необходимо учитывать способ использования помещения. Различают принципиально два способа: с постоянным наличием людей (сидячая работа) и временным – транзитные зоны для прохода.

Для обнаружения сидящих людей оптимальным является датчик присутствия потолочного монтажа с обзором 360 o .

Преимущества:

— нет преград для обзора;

— по всей зоне контроля одинаково высокая чувствительность;

— ограниченная дистанция между датчиком и людьми.

Наилучшей формой для зоны контроля датчика (потолочного) является квадрат. Квадратная форма повышает надежность и упрощает размещение датчика, так как:

— форма зоны контроля оптимально подходит к геометрии помещения, гарантируя непрерывное покрытие;

— зона контроля датчика четко определена, она распространяется на одно помещение или его часть;

— чтобы перекрыть большую площадь, допускается несколько зон расположить в ряд без пропусков.

Необходимо учесть, что сидящие люди должны полностью находиться в зоне контроля, поэтому она будет меньшего размера чем зона для ходящих людей. Величина зоны зависит от высоты установки датчика.

Для обнаружения ходящих людей применяют датчики настенного монтажа с 180 o обзором или потолочные модели с большой зоной контроля.

Преимущества:

— активные зоны датчика менее плотно расположены, зато повышен радиус действия;

— активные зоны располагаются в помещении горизонтально, т.е., зона контроля датчика растянута и не имеет четких ограничений;

— с увеличением расстояний до датчика уменьшается чувствительность;

— пересечение активных зон датчик воспринимает на больших расстояниях, при движении на датчик чувствительность уменьшается.

При размещении датчика необходимо учитывать:

— люди могут периодически находиться вне активных зон;

— вход (двери) должны полностью находиться в зоне контроля;

— сидящие люди распознаются только в непосредственной близости.

Сравнение характеристик

В принципе, любое помещение подходит для установки датчика присутствия. Необходимо только учесть геометрию и характер использования.

Таблица показывает критерии для выбора соответствующей модели в зависимости от места установки (на примере изделий HTS )

Серия ECO-IR 360 Compact office Серия ECO-IR 180
Потолочный монтаж (360о) с квадратной зоной контроля Настенный монтаж (180о) с удлиненной зоной
Преимущественно для людей с сидячей работой Преимущественно для ходящих людей
Увеличенная зона контроля для ходящих людей Уменьшенная зона для сидящих людей
Радиус действия зависит от высоты монтажа Большой (неограниченный) радиус действия
Квадратная зона контроля с четкими границами Зона контроля не имеет четких границ
Покрытие площади без разрывов, высокая, равномерная чувствительность во всей зоне Различная чувствительность внутри зоны, уменьшается с возрастанием дистанции до датчика
При большом расстоянии до датчика необходимо значительное перемещение для обнаружения человека

Самонастраивающаяся задержка выключения

Иногда люди могут находиться в помещении без малейшего движения, при этом даже высокочувствительный датчик не зарегистрирует присутствия человека.

Чтобы определить наличие людей в помещении, датчик должен «перекрыть» время между двумя движениями. Для этого устанавливается задержка выключения. С каждым новым движением эта задержка отсчитывается заново. Пока она не закончится, помещение считается занятым.

Длительность задержки может изменяться, т.е., автоматически подгоняться к условиям использования помещения. В местах постоянных хождений, таких как коридоры, свет должен выключаться как можно быстрее без ненужного длительного включения. Зато в офисах, с редкими и нерегулярными движениями, задержка увеличивается для исключения частных включений и выключений.

Максимальное увеличение может достигать 15 минут, минимальная задержка – 2 минуты. Если установлено промежуточное значение, даже если режим работы помещения требует меньшей задержки, она не может быть уменьшена в режиме самообучения. При необходимости задержки меньше 2-х мин. и больше 15 мин., режим самообучения деактивируется и задержка остается постоянной. Это свойство самообучаемости предотвращает ненужные срабатывания, экономит электроэнергию при сохранении высокого комфорта.

Настройка чувствительности

Датчик присутствия должен четко определять незначительные движения и в то же время игнорировать посторонние тепловые излучения (помехи). Для этой цели датчики HTS обладают подгонкой чувствительности. При наличии людей она возрастает чтобы зафиксировать малейшие движения, при отсутствии – понижается. Таким образом, высокая чувствительность сочетается с мощным подавлением помех.

Контроль помещения

Наряду с контролем электроэнергии, датчик присутствия может применяться в целях безопасности, реагируя на наличие людей в помещении.

Обладая высокой чувствительностью, он может ложно срабатывать. Чтобы это исключить, чувствительность понижается, датчик будет реагировать только она явные движения.

Источники помех

Обычно, датчик срабатывает при наличии людей в помещении, но иногда на него могут повлиять посторонние воздействия (помехи). Поэтому, при проектировании, перед монтажом, необходимо их устранить.

Ограниченный обзор датчика. Подвесные светильники могут послужить причиной затенения зоны контроля датчика, если они смонтированы в непосредственной близости. Зону контроля могут ограничивать перегородки, полки, растения и т.д.

Симуляция движений. Быстрое изменение температуры в окрестностях датчика, вызванное включением или выключением кондиционеров, симулирует движение, если поток воздуха направлен на линзы датчика или на объект вблизи зоны контроля датчика. Включение или выключение светильников, например, с лампами накаливания или галогеновыми на расстоянии менее 1 м. Движущиеся объекты: машины, механизмы, качающиеся плакаты также могут стать источниками помех.

Не создают помех медленно меняющие свою температуру объекты: отопительные радиаторы (расстояния от радиаторов и труб >0,5 м); компьютерная техника: принтеры, мониторы; вентиляция, если теплый приточный воздух не направлен непосредственно на датчик; поверхности, освещенные солнцем.

По материалам компании Theben HTS Статья опубликована в журнале Телеком 4-5/2014

Датчиков движения основана на анализе волн различных типов, поступающих из окружающей среды. В зависимости от типа используемой волны датчики движения бывают инфракрасными, радиоволновыми, ультразвуковыми и комбинированными.

Принцип работы инфракрасного датчика движения основан на определении температуры объекта, которая отличается от температуры окружающей среды. Инфракрасное или тепловое излучение фокусируется специальной оптической системой — линзой Френеля — и направляется на чувствительный полупроводниковый элемент — пироэлектрик. Это вызывает изменение электрического потенциала пироэлектрика, которое обрабатывается по специальному алгоритму и приводит к включению сигнала тревоги. Чтобы датчик не реагировал на нагретые, но неподвижные объекты, линзы разбивают зону чувствительности датчика на несколько отдельных лучей. Датчик сработает в том случае, если объект последовательно пересечёт несколько лучей. При этом перемещение с очень малой скоростью может не зафиксироваться системой.

Принцип работы ультразвукового датчика движения основан на звуковой локации. Основу такого датчика составляет звуковой генератор, вырабатывающий колебания с частотой 25-40 кГц. Они не слышны человеческим ухом, но, как и любые звуковые волны, отражаются от препятствий и возвращаются обратно к источнику. Датчик движения имеет излучатель колебаний и микрофон, который воспринимает отражённый сигнал. В соответствии с эффектом Доплера любое тело, пересекающее поток излучения, изменяет интерференционную картину. Поэтому частота отражённого сигнала будет отличаться от излучаемой частоты. В качестве излучателя и приёмника используются элементы из пьезокерамики.


Радиоволновой датчик движения работает по тому же принципу, что и ультразвуковой, только вместо звуковой частоты микрочип генерирует СВЧ-излучение с частотой 2,5 ГГц. Если в зоне распространения волны появляется движущийся объект, то изменяются длина и частота волны, что сразу определяется приемником. Радиоволны способны проходить через неметаллические преграды, например через стены и деревянную мебель, кроме того, они достаточно дорогие. Потому их обычно используют для наблюдения за большими коммерческими площадями, например за складскими помещениями.


Чтобы избежать ложных срабатываний, применяются комбинированные датчики. Обычно в одно устройство объединяются инфракрасный и радиоволновой датчики. Эта схема отличается высокой помехоустойчивостью, надёжностью и отсутствием ложных срабатываний.

Как устроен датчик наклона-перемещения внутри…
Для написания статьи взят датчик наклона и перемещения
Что же у него внутри?

Рисунок 1. Ключевые компоненты датчика.

Сердце датчика – 3-координатный датчик ускорений (акселерометр). На фотографии он отмечен буквой «А».
Акселерометры выпускает несколько фирм-столпов мировой микроэлектроники. В датчике наклона от Spider® применен MEMS-датчик от Freescale.
Внутри он содержит микромеханические емкостные сборки, чувствительные к ускорению (так называемые g-cell) и интегрированную микросхему, обеспечивающую первичную обработку сигнала, термокомпенсацию и выдачу его для дальнейшей обработки микроконтроллером.

Чувствительный элемент (g-cell) представляет собой механическую структуру, сформированную из полупроводниковых материалов (поликремния) при помощи технологических процессов маскирования и травления. Их можно представить как набор электродов, прикрепленных к массе, подвижной относительно жестко закрепленных электродов. Под воздействием ускорения масса отклоняется от нейтрального положения, изменяя соотношение расстояний между подвижными и неподвижными электродами.

Рисунок 2. Упрощенный эскиз ячейки, чувствительной к ускорению (g-cell)

Масса с подвижными электродами смещается под воздействием приложенного ускорения. При этом пропорционально изменяются емкости сформированных электродами конденсаторов (у одного конденсатора она увеличивается, а у другого уменьшается). Встроенная в акселерометр интегральная схема измеряет емкости и вычисляет ускорение, основываясь на их разнице. Также интегральная схема усиливает сигнал и нормализует таким образом, чтобы он был пропорционален ускорению.

В акселерометре есть три чувствительных элемента, сориентированных по осям X,Y и Z и три канала, сигналы в которых соответствуют действующему на датчик ускорению.
Чувствительный элемент герметизирован на этапе производства акселерометра.

На все окружающие нас предметы действует сила тяжести. Говоря иными словами все они, даже находясь в состоянии покоя, испытывают ускорение свободного падения (g).
Вот это ускорение и «раскладывается по осям» акселерометра.

Устаревшие датчики наклона автомобилей были построены на 2-координатных акселеромерах (еще несколько лет назад 3-координатный датчик из-за большей сложности изготовления и цены считался непозволительной роскошью) и требовали установки в положении, как можно более горизонтальном. Иначе просто переставали «видеть» наклон.

Как устроен датчик наклона современный: у него внутри уже 3-координатный сенсор. то есть тот же Spider TMS2 или Spider STMS, обладая способностью ориентироваться во всех трех координатах нашего трехмерного пространства, одинаково хорошо работает независимо от положения его установки.

Сигнал с акселерометра обрабатывается высокоинтегрированным микроконтроллером (отмечен на Рисунке 1 буквой «М»). Аналого-цифровой преобразователь (АЦП) оцифровывает сигналы. При воздействиях на автомобиль меняется результирующая «раскладка» ускорения по осям.

Микроконтроллер и встроенная в него программа также проделывает дополнительную обработку для отфильтровывания ложных сработок. А они, как можно догадаться из принципа работы, могут быть спровоцированы ударами, вибрацией, раскачиванием и даже просто большим изменением температуры.
В общем виде он выглядит так:
— сигналы с частотами выше 30-60 Гц – это удары
— сигналы с частотами 0,1-10 Гц – это движения (естественно раскачивания и оттаскивание машины отличаются)
— изменения постоянной составляющей – это подъем кузова
— и т.д.
Когда с машины попытаются снять колеса или куда-то ее оттащить, попытаются укатить мотоцикл или мопед микроконтроллер датчика наклона (в соответствии с настройками чувствительности) выдаст сработки зон предупреждения и тревоги.

Алгоритмы, позволяющие по изменениям сигнала достоверно различать что происходит с машиной, являются «ноу-хау» производителя датчиков наклона. Но именно во внимании к «мелочам» заключается секрет сочетания высокой чувствительности и иммунитета к ложным срабатываниям датчика.

Высокая надежность датчиков наклона-перемещения Spider TMS2 и Spider STMS обеспечивается:
— использованием интеллектуальных алгоритмов обработки сигналов
— применением лучшей элементной базы от мировых производителей
— бескомпромисным отношением к качеству сборки

Датчиком движения именуют маленькую составную часть приспособлений, относящихся к разряду датчиков обнаружения.

Главная цель подобных аппаратов, в охранной сфере – сообщение о действиях, указанных в программе, на специальный пульт.

Датчики движения подлежат классификации по месту их размещения:

  • размещенные внутри объекта;
  • расположенные по всему периметру на улице;
  • установленные по периферии;

Типичные действия, которые входят в программу датчиков:

  • реагирование на телодвижения людей, на обозначенной территории;
  • сообщение о повреждениях форточек, стекол, оконных и балконных конструкций;
  • уведомление о попытках вторжения через стены и крышу;

Устройство и принцип работы


Принцип работы и само устройство ДД достаточно просты:

  1. В прибор установлен датчик, замечающий излучение тепла людей, после чего, срабатывает система, например, осветительных устройств.
  2. На подконтрольной территории ДД, при возникновении движения, которое спровоцировал человек, осуществляется замыкание силовой цепочки.
  3. Осуществление контрольных функций без перерыва, в установленном месте, за инфракрасным излучением – главный принцип срабатывания ДД.
  4. В месте наблюдения, тепловое поле изменяется, при появлении достаточного по весу, объекта в движении.
  5. В контролируемой зоне, ДД может подать сигнал, если телодвижения человека не существенные, например, он просто размахивает рукой. Это возникает из-за чередования зон общего инфракрасного поля в шахматной последовательности.
  6. Для срабатывания датчиков важно, чтобы объект двигался.
  7. С помощью ДД можно производить управление электронными аппаратами – освещением, работой кондиционеров, мероприятий охраны.

Во всех ДД возможно поменять настройки:

  1. Промежуток времени отключения. Можно задавать любое время с момента обнаружения движения.
  2. Предел освещенности. Это нужно для того, чтобы контролировать работу аппарата в разный период суток.
  3. Порог чувствительности. Чем больше чувствительность, тем быстрее прибор среагирует.

Область применения

Наиболее распространенные ситуации, при которых использование ДД будет полезным:

  • регулировка процессов запуска фонтана;
  • управление функцией подсветки плавательного бассейна, искусственных водоемов;
  • регулировка процесса деятельности световых приборов при входе в помещения;
  • охранные объекты;

Все категории этих приборов можно использовать в работе совместно с таймерами и сенсорными устройствами, которые осуществляют слежение и управление периодичностью осветительных приборов. Подобные конфигурации датчиков называют сумрачными выключателями. Они запускают работу самих датчиков только в темное время суток.

Виды датчиков движения

На сегодня, наибольшим спросом пользуются виды ДД:

  • ультразвуковые (УЗ);
  • инфракрасные (ИК);
  • микроволновые (СВЧ);
  • комбинированные;

Каждый вид имеет достоинства и недостатки, применяется в разных условиях.

Рассмотрим по отдельности обозначенные типы ДД:

Ультразвуковой

Осуществляет слежку за объектами ультразвуком. При передвижении людей, датчик срабатывает. Их часто устанавливают в патронниках автомашин, в системах осуществления контроля за слепыми зонами. В жилых комплексах отменно показали себя на лестничных площадках.

Недостатки УЗ ДД:

  1. У животных вызывает дискомфорт, поскольку они чувствуют ультразвуковые частоты.
  2. Дальность действия не далека.
  3. Начинает работать только при резких движениях, их можно обмануть плавными действиями.

Плюсы УЗ ДД:

  1. Невысокая ценовая категория.
  2. Не подвержены воздействиям природной среды.
  3. Фиксируют движения при любых материалах объекта.
  4. Не теряют рабочие функции при возникновении влажности, пыли.
  5. Не реагируют на перепады температурного режима окружающей среды.

Инфракрасный ДД


Обнаруживает изменения теплового излучающего действия окружающих объектов. При передвижении людей, излучение по очереди фокусируется линзами прибора на сенсоре, что служит посылом для выполнения установленной в датчике функции. При повышении количества установленных линз, увеличивается чувствительность аппарата. Зона охвата у ДД зависит от площади поверхности линз.

Недостатки ИК ДД:

  1. Они могут ложно срабатывать на теплый ветер.
  2. При работе в уличных условиях, снижается достоверность из-за попадания дождя, солнечных лучей.
  3. Не видит людей, искусственным образом не излучающих ИК излучения (накрытых специальными материалами).

Плюсы ИК ДД:

  1. Точность регулирования расстояния нахождения объектов при их движении.
  2. Удобство применения вне зданий, поскольку реагирует только на объекты с собственной температурой.
  3. Полная безвредность для людей, животных, поскольку вредных компонентов не выделяет.

Микроволновый ДД

Выпускает магнитные волны высокой частоты, которые, отражаясь, замечаются сенсором. При их изменении, прибором приводится в действие, обозначенная у него функция.

Минусы СВЧ ДД:

  1. Наиболее высокая цена на него.
  2. Возможны ложные срабатывания, при появлении признаков движения за установленным диапазоном наблюдения, например, за окном.
  3. Могут представлять опасность здоровью людей, следует отдавать предпочтение ДД с минимальной мощностью производимого излучения. Безвредным считается непрерывное излучение с потоком мощности до 1 мВт.

Плюсы СВЧ ДД:

  1. В охранных целях, может устанавливать объекты за хрупкими стенами, стеклами.
  2. Режим его работы не влияет от температуры среды.
  3. Реагирует даже на малозначительные движения.
  4. Сам по себе имеет небольшие размеры,

Комбинированные ДД

Как выбрать датчик движения?

Если устройство приобретается для установки в условиях улицы, то необходимо знать:

  1. Температуры, при которых возможна эксплуатация прибора: от -35 до +50 градусов, влажность – до 100 %.
  2. Класс, к которому отнесена защита устройства.
  3. Качество и удобство настройки параметров прибора.
  4. Присутствие антисаботажной функции, которая дает уведомления, если кто-то пожелает сломать аппарат.

Если ДД приобретается для внутреннего пользования, то он может иметь небольшой температурный режим работы, но для него важен имеющийся угол обнаружения: от 180 до 360 градусов.

Перед тем, как приступить к выбору ДД, следует выделить основные параметры:

  1. Сфера использования: дома, на улице, в организации.
  2. Наличие энергосберегающей функции.
  3. Дальность режима срабатывания.
  4. Точная настройка параметров включения и выключения датчика.

Советы по выбору:

  1. Для квартир, домов лучше всего приобретать инфракрасный датчик обнаружения движения, он не представит опасности для людей, от него не исходят излучения, он экономично расходует электроэнергию.
  2. Не рекомендуют использовать ДД с люминесцентными лампочками, предпочтение лучше отдавать светодиодным или обычным.
  3. Класс защиты, для уличных вариантов ДД, охранного наклона, должен составлять 65 или 55.

Лучшие модели

Самыми популярными вариантами датчиков движения признаны:

Flash-SRP600, LC 100 (цена – 403,1 руб.)


Модель Flash не срабатывает на появление животных, если вес их меньше 25 кг.

Crow LC 102 (цена – 1 397,96 руб.)

Приборы Crow LC102, SWAN 1000 являются комбинированными, они очень точные.

SWAN 1000 (цена-1410 руб.)


Страж П-314 (цена -2 913,03 руб.)


Их применяют в сфере охраны. Он не дает реакцию на телодвижения животных. Работа распространяется на определение ИК излучения людей. При обнаружении ИК излучения, датчик выясняет вес объекта и сигнализирует на пульт, когда он больше 20 кг.

Преимущества:

  • простота в процессе установки;
  • имеет модный дизайн;
  • его можно устанавливать на улице;

PIR-3SP (цена – 2890 руб.)


Среди беспроводных ДД, большим спросом пользуется PIR-3SP. Он, так же не реагирует на движения животных, применяется в сфере охраны объектов.

Обработка поступающего сигнала происходит микропроцессором, который производит дополнительную проверку информации.

Преимуществами прибора являются:

  • подача сигналов тестирования на центральный блок;
  • при разряде батареи подается сигнал;
  • применение протокола шифрования данных с кодом;

Установка датчика

Процесс установки датчиков движения технически не сложен и не составит труда для профессионала в этом деле. Без специальных познаний, лучше этим не заниматься.

Кабель ДД соединяется с общей проводкой целого дома или помещения, через стандартную коробку распределения.

Совместно с датчиком движения, как правило, сразу происходит установка таймера, сенсорных устройств, реагирующих на изменения интенсивности внешнего освещения. Это делается для того, что бы ДД включался только при наступлении темноты на улице.

В процессе установки датчиков, нужно учитывать габариты помещения, расположение оконных и дверных проемов, наличие козырьков, поскольку все это оказывает влияние на правильную и достоверную работу приборов.

Подробные инструкции по установке ДД и мер безопасности, которые следует при этом соблюдать, указаны в паспортах купленных приборов.

Выводы

  1. Датчики движения – довольно распространенные приборы во многих сферах: от осветительных приборов, до охранных комплексов.
  2. От типов ДД зависят их функциональные особенности и сфера применения.
  3. Оптимальными вариантами являются комбинированные ДД, которые не имеют недостатков.
  4. При выборе ДД внимание следует уделять температурным режимам их работы, безопасности для людей и животных, наличию функции энергосбережения и антисаботажной системы.
  5. Установку ДД лучше доверить профессионалам, а вот выбрать его – под силу каждому.

Индуктивный датчик приближения. Внешний вид

В промышленной электронике индуктивные, и другие датчики применяются очень широко.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) - понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления . Давления воздуха или масла нет – сигнал на контроллер или рвёт . Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами .

Пока хватит, перейдём к теме статьи.

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – .

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам .

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный . Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм . Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков , на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – . Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.