Альтернативные источники энергии

Гост измерение толщины металла. Порядок проведения испытаний

Гост измерение толщины металла. Порядок проведения испытаний

Компания "Установка Свай" предлагает услуги по погружению забивных ЖБ свай высокопродуктивными молотами дизельного типа. Наше оборудования представлено трубчатыми и штанговыми молотами с массой бойка от 1.5 до 3 тонн. Данные агрегаты эффективно забивают сваи во все распространенные в центральном регионе России виды грунтов.

На данной странице представлена информация о технологии погружения свай дизель молотами. Мы рассмотрим спецификацию и технические характеристики данного оборудования, виды молотов и их функциональные возможности.

Дизель-молоты - это навесное оборудование

Дизель-молоты относятся к классу навесного копрового оборудования, которым комплектуется сваебойная установка . Молот фиксируется на направляющих узлах копровой мачты сваебоя посредством специальной монтажной плиты. В процессе работы он перемещается в вертикальной плоскости, опускаясь по мачте вместе со стволом погружаемой сваи.

Сфера использования дизельных молотов обширна, данная техника применяется в следующих целях:

  • Для забивки ЖБ свай (квадратного, прямоугольного, круглого сечения, составных конструкций);
  • Для забивки металлического шпунта (зетового, корытообразного, плоского).

Важно : молоты устанавливаются на сваебойных машинах колесной либо гусеничной компоновки. Мачта сваебоя и дизельный молот имеют унифицированную систему креплений, что позволяет комплектовать сваебой любой моделью агрегата для ударной забивки свай.

Рис. 1.1

Сечение и конфигурация свай и шпунта, с которыми может работать дизель-молот, зависят от формы его наголовника - крепежного элемента, посредством которого молот фиксируется на стволе погружаемой конструкции. Каждое конкретное сечение (30*30, 40*40 см. и т.д) требует использования соответствующего наголовника.

В заводской комплектации дизель-молот имеет набор наголовников под наиболее распространенные типоразмеры свай, при необходимости дополнительные наголовники приобретаются отдельно.

Виды дизель-молотов для погружения свай

Дизельные молоты классифицируются на подвиды исходя из конструкционных различий агрегатов. По параметру массы ударной части выделяют следующие виды молотов:
  • Легкие - вес бойка до 700 кг;
  • Среднетяжелые - до 2000 кг;
  • Тяжелые - от 2500 кг.

Важно : также выполняется разделение по форме конструкции, согласно которой классифицируют агрегаты трубчатого типа и штанговые молоты.

  • Штанговые молоты
Ознакомьтесь с типичной схемой компоновки штангового молота:


Рис. 1.2 : Схема штангового молота

К базовым функциональным узлам данного оборудования относятся:

  • Зафиксированный на стальной шарнирной плите поршневой блок;
  • Параллельные трубы, выполняющие функцию направляющих элементов бойка;
  • Система нагнетания дизтоплива в поршень;
  • Кошка - узел, фиксирующий наголовник молота.


Рис. 1.3

Поршневой блок, являющийся литой конструкцией, сформированной во внутренней части шабота, в свою очередь состоит из поршня и компрессионных колец. Система нагнетания топлива представлена форсункой, подключенной к топливному насосу через шланг подачи.

На зафиксированной поверх шабота шарнирной плите размещены 2 параллельные друг другу направляющие рамы, связанные стальной перемычкой на верхнем контуре. Во время функционирования по раме перемещается боек, в корпусе которого размещена камера детонации топлива.

  • Трубчатые молоты
Схема компоновки агрегатов трубчатого типа приведена на следующем изображении:


Рис. 1.4

Отличия трубчатых механизмов заключаются в том, что направляющую функцию в данном оборудовании выполняет корпус, представляющий собою стальную цилиндрическую трубу. Ударная часть трубчатого молота одновременно является его поршнем, внутрь которого форсункой подается топливная смесь.



Рис. 1.5


Важно : закрытый корпус трубчатых молотов позволяет реализовать в них принудительное охлаждение, которое отсутствует в штанговых агрегатах. Его наличие является одним из ключевых преимуществ трубчатых конструкций над штанговыми - они подлежат продолжительной эксплуатации без перерывов на естественное охлаждение, тогда как при использовании штанговых дизельных молотов необходимо выдерживать принудительные паузы, чтобы не допустить перегрева оборудования.

Технические характеристики дизель молотов

Трубчатые агрегаты планомерно вытесняют с обихода молоты штангового типа. Помимо преимущества в виде принудительного охлаждения, причиной тому является значительно увеличенный эксплуатационный ресурс (в 30-40%) и лучшее соотношение веса бойка к развиваемой мощности удара.

Наиболее востребованной серией дизельных молотов в отечественном строительстве выступают молоты СП и УР, увидеть их технические характеристики вы можете на нижеприведенном изображении:



Рис. 1.6 : Спецификация молотов серии СП

Вес ударной части в штанговых дизель-молотах может доходить до 3 тонн, при этом их максимальная энергия удара не превышает 42 кДж, диапазон числа ударов по свае за минуту - 45-55 шт.



Рис. 1.7

Ввиду ограниченной мощности такие конструкции используются для монтажа ЖБ свай и шпунта в низко и среднеплотную почву - для реализации фундаментных работ в твердых грунтах применяются трубчатые молоты.

Данные агрегаты могут работать в температурном диапазоне от -35 до +40 градусов (в условиях эксплуатации на морозе более 20 град. поршневой узел молота подлежит предварительному прогреву). У трубчатых агрегатов более вариативна масса бойка - его вес может быть, 5, 3.5, 2.5, 1.8 либо 1.25 т.. Диапазон ударной мощности- от 35 до 170 кДж. Скорость работы - до 45 уд/мин.

Технология погружения свай дизель молотами

Принцип работы агрегатов трубчатого и штангового типа идентичен. Последовательность эксплуатации молотов следующая:
  • Первоначально копровая машина размещается на месте погружения, далее она подтягивает лебедками сваю с временного склада, ствол стропуется тросами, устанавливается забивочное положение и подводится под наголовник молота;
  • Столб закрепляется на копровой мачте, на него опускается молот и производится сопряжение сваи с наголовником;
  • Ударный боек агрегата посредством лебедки копра по направляющим поднимается в верхнюю часть корпуса;
  • После включения оператором копровой машины рычага сброса бойка, он под воздействием собственного веса по направляющим падает к закрепленному на наголовнике шаботу;
  • При падении бойка активируется топливный насос и форсунка подает в камеру сгорания дизтопливо;
  • При контакте бойка и шабота поршень ударяет в цилиндрическое углубления камеры сгорания, из-за чего находящаяся в ней смесь самовозгорается и детонирует;
  • Благодаря возникшей в результате взрыва топлива энергии боек подбрасывает по направляющим вверх;
  • Когда энергия подъема бойка уравновешивается силой притяжения боек начинает под своим весом обратно падать вниз.
В результате

Итак, сваи - конструктивный элемент, передающий нагрузки от здания (сооружения) на грунты, находящиеся значительно ниже условной нулевой отметки. Железобетонные сваи квадратного сечения 300х300мм, 350х350мм, 400х400мм длиной от 3м до 16м и составные длинной до 32м являются оптимальным выбором для строительства на слабых грунтах. В мостовом строительстве применяются центрифугированные (полые) свай диаметром 600мм.

Технология практически не меняется на протяжении уже многих лет, однако в последние годы введены определенные ограничения на применение свайных молотов в условиях городской застройки. В плотно застроенных городских районах используют буронабивные сваи , которые значительно дороже, однако при их устройстве не возникает риск разрушения соседних ветхих зданий. Или выполняют комплекс работ (устройство шпунтового ограждения, предварительный выбор грунта, лидерное бурение) по снижению негативной нагрузки на существующие фундаменты зданий и инженерные сети.

Способы погружения свай в грунт.

До начала погружения свай в грунт выполняют комплекс подготовительных работ в соответствии с проектом производства свайных работ, в состав которого входят:

  • доставка и складирование готовых железобетонных свай ,
  • доставка и монтаж оборудования для погружения, разработка схемы перемещения сваебойной установки с указанием очередности погружения свай согласно ППР ;
  • планировка площадки основания (в весенне-осенний период как правило производят подсыпку из битого кирпича или щебня);
  • геодезическая разбивка осей свайных рядов;
  • пробная забивка свай для уточнения расчета несущей способности сваи (проведение статических и динамических испытаний).

Последовательность забивки свай устанавливается проектом с учетом свойств грунта, и маневровых особенностей техники.

Геодезическая разбивка, т.е. вынос в натуру точек расположения свай осуществляется нашими специалистами на основании чертежей и полученных от заказчика осей здания. В соответствии с нормативными требованиями, допустимыми отклонениями свай от проектной оси являются значение 0,2d при линейной забивке, либо 0,3d если сваи будут объединяться фундаментной плитой. d - сечение сваи, т.е. при забивке свай 300х300мм под "плиту", допустимым значением отклонения будет 9 сантиметров.

Для погружения свай используются различные методы

  • ударный метод - забивка свай молотом
  • метод вдавливания
  • вибрационный метод - погружение свай при помощи вибрации
  • бурение и установка свай в скважину (с применением лидерного бурения)

Ударный метод.

Забивка осуществляется молотами разных типов с ударной частью весом, обычно 1,8 - 12 тонн, смонтированными на тяжелую, как правило гусеничную технику (копры, гусеничные краны, троссовые и гидравлические экскаваторы). Сваи погружают в грунт приложением вертикальной (иногда наклонной) нагрузки.

Базовая машину служит для того, чтобы зацепить сваю, поднять ее и завести в наголовник молота, двигающийся по направляющей мачты. Дальше молот сбросом ударной части забивает сваю в грунт.

Забивку сваи начинают несколькими легкими ударами с последующим увеличением силы ударов до максимальной. При отклонении положения сваи от вертикали более чем на 1 % сваю исправляют подпорами, стягиванием и т.п., или вытягивают и забивают снова. Забивка сваи продолжается до получения заданного проектом отказа - величины погружения сваи от одного удара молотом после окончания забивки. Забивку свай при приближении к проектной величине погружения производят «залогами», т. е. 10 ударами молота подряд. Погружение сваи от одного залога замеряют с точностью до 1 мм. Отказ сваи определяется как частное от деления величины погружения сваи от одного залога на число ударов в залоге.

Метод вдавливания.

Метод вдавливания свай применяется при реконструкции зданий, которые нельзя сносить, так как они представляют собой историческую ценность и охраняются законом.

Наиболее эффективной областью применения технологии вдавливания свай является погружение железобетонных свай и шпунтов вблизи или внутри существующих зданий и сооружений в условиях плотной застройки, вблизи ветхих и аварийных сооружений, в оползневых зонах и в других местах, где нельзя погружать сваи ударным методом или вибропогружением из-за недопустимости динамических, вибрационных и шумовых воздействий. Оборудование для вдавливания свай достаточно громоздко, производительность оставляет желать лучшего, однако иногда этот безударный метод просто незаменим. Наибольшее применение получили шагающие сваевдавливающие установки Sunward.

Вибрационный метод - погружение свай (шпунта) при помощи вибрации.

Метод вибропогружения эффективен при погружении свай в водонасыщенные песчаные и малосвязные грунты. При этом происходит разжижение песчаного грунта и резко уменьшаются силы трения по боковой поверхности. После прекращения вибрации эти силы трения восстанавливаются.

Вибропогружатель - возбудитель колебаний вдоль оси сваи. Устройство с вращателем и пригрузом со смещенным центром тяжести с приводом от электродвигателя, либо гидростанции подвешивается на оголовке сваи. За счет значительного веса вибропогружателя и колебаний, свая (шпунт) погружается в грунт. Вибропогражатели, в отличие от молотов, имеют определенные ограничения по типам грунтов, в которых можно работать. Также, при вибропогружении часто применяют лидерное бурение.

Технология забивки свай с применением лидерного бурения

Лидерное бурение - бурение, выполняемое перед погружением сваи. Целей у лидерного бурение может быть несколько: снижение динамической нагрузки, передаваемой при забивке сваи на близлежащие строения, снижение шума от работы дизель-молота, увеличение длины используемой сваи (при погружении в плотные грунты). Также лидерное бурение применяется в случае наличия в геологическом разрезе песчаной прослойки более 2 метров. Решение об устройстве лидерных скважин принимается проектировщиком на основании отчета об инженерно-геологических изысканиях.

Диаметр шнека при лидерном бурении под сваи 300х300 принимается 200мм-250мм в зависимости от категории грунтов. Глубина бурения, обычно, на 0,5 метра меньше глубины погружения сваи. Также, например, для забивки 10-метровой сваи, при залегании метровой песчаной прослойки на глубине 5 метров, может быть назначено лидерное бурение на глубину 6-6,5 метров для снижения негативного эффекта песка при погружении свай.

При лидерном бурении, грунт, выбираемый шнеками из скважины увеличивает высотную отметку поверхности земли (котлована) на 10 и более сантиметров (в зависимости от глубины и диаметра бурения. Необходимо грамотно подходить к производству работ по бурению т.к. при забивке сваи , скважина, находящаяся в непосредственной близости часто осыпается из-за динамических нагрузок при работе молота. Для устройства лидерных скважин при проведении свайных работ, нашей компанией используется установки ПБУ-2-317, ЛБУ-50, УРБ-2А2.

Машины и оборудование для погружения забивных свай

Используется дизель-молоты на базе полноповоротных экскаваторов серии ЭО. Экскаваторы на гусеничном ходу и служат, по большому счету, для перемещения сваебойного оборудования. Сваебойным оборудованием является мачта и непосредственно сам молот. Молот перемещается по направляющим на мачте.

Но наиболее эффективны копры с гидромолотом такие как: Junttan PM20, Junttan PM22, Junttan PM25, Hitachi KH-150-3 , Hitachi KH-180-2, Nippon-Sharyo DH, Banut, PVE, Liebherr.

В случае необходимости молот может быть заменен на буровое оборудование для производства лидерного бурения. При перебазировке с объекта на объект, с базовой машины снимается молот и мачта (состоящая из 2-3 частей). Учитывая негабаритные размеры и вес копра, его перебазировка осуществляется по специальному разрешению ГИБДД с сопровождением.

Молоты для забивки .

Молот состоит из ударной части, перемещающейся вдоль направляющих, шабота (неподвижной части) и наголовника. По типу действия различают дизель-молоты и гидромолоты.

На фотографии представлены очень распространенные штанговые дизель-молоты и отечественные гидромолоты "Ропот". Между ударной и неподвижной находится обычный цилиндр дизельного двигателя. Принцип работы также очень похож на обыкновенный дизельный двигатель. Ударная часть поднимается тросом, в этот момент открывается подача топлива, затем молот сбрасывается и в цилиндре происходит взрыв т.к. как известно, воспламенение дизельного топлива происходит от сжатия. За счет энергии удара молота и взрыва в цилиндре, свая погружается, а ударная часть молота подбрасывается вверх и снова падает. Так происходит пока не прекращается подача топлива.

Гидромолот отличается механизмом привода. Вместо цилиндра ДВС, ударная часть приводится в движение гидравликой. Причем при помощи гидравлики, ударная часть не только поднимается, но и опускается, т.е. не сбрасывается. За счет этого есть возможность регулировки высоты подъема. Если дизель-молот бьет с практически одинаковой частотой, гидромолот может бить как с максимальной силой, так и маленькими частыми ударами, что очень удобно при работе на песчаных грунтах. Вест ударной части гидромолотов составляет 3-12, в отличие от дизель-молотов, у которых ударная часть весит 1,8-3 тонны. Хотя существую импортные дизель-молоты с ударной частью 10, 14, 16 тонн.

Экологические и внешние преимущества при работе с гидромолотом:

  • Надежность, безотказность, простота эксплуатации, всесезонность, всепогодность.
  • Регулирование энергии ударов.
  • Минимальное сейсмическое воздействие на грунт, позволяющее производить сваебойные работы в плотной городской застройке без опасности для близкорасположенных зданий.
  • Производительность в 2 раза выше аналогичных устройств забивки свай свободного падения.
  • Пониженный шум.
  • Отсутствие выхлопных газов, экологическая чистота.
  • Пониженная вибрация.

При забивке железобетонных и стальных свай обязательно применяют наголовники, предохраняющие головку сваи от повреждения при ударе по ней молотом сваебойной установки. При забивке деревянных свай голову сваи предохраняют от размочаливания бугелем, преставляющим собой цилиндрическое кольцо из полосовой стали, надеваемое на голову сваи. Нижний конец деревянной сваи заостряют в виде четырехгранной или трехгранной пирамиды. При наличии в грунте твердых включений на острие сваи надевают металлический башмак, защищающий острие от размочаливания. Деревянные сван применяют при условии заложения головы сваи ниже уровня грунтовых вод.

Для того, чтобы мощные удары не разбили голову сваи, в наголовник молота вставляют деревянную прокладку, выполняющую функцию амортизатора.

ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ПРОИЗВОДСТВЕ СВАЙНЫХ РАБОТ

Установка сваебойного оборудования и свай должна быть выполнена без перерыва до полного закрепления их на месте.

В процессе забивки свай необходимо постоянно наблюдать за состоянием сваебойной установки, в случае ее неисправности, работы должны быть немедленно прекращены.

Подтаскивают сваи к копру только через отводной блок, закрепленный у основания копра и по прямой линии в пределах видимости для моториста лебедки.

К работам по забивке свай допускаются лица, знающие правила обращения с оборудованием и механизмами и сдавшие специальный технический минимум. При. кратковременной остановке молот должен быть прикреплен к копру, а подъемный канат - ослаблен. При длительных остановках молот опускают в нижнее положение и закрепляют его.

Каждый копер оборудуют звуковой сигнализацией. Перед пуском в действие свайного молота подается звуковой сигнал.

Передвижка сваебойной установки со стоянки на стоянку осуществляется только по команде бригадира и под его наблюдением.

В зимнее время рабочие площадки должны быть очищены от снега и льда и посыпаны песком.

Контроль качества при погружении (забивке) свай

Контроль качества работ по устройству свайного фундамента ведется пооперационно с оформлением актов подготовки котлована, подъездных путей, геодезической разбивки, погружения свай, устройства ростверка.

Данные о погружении свай необходимо записывать в «Журнал забивки свай». Основным требованием к качеству погружения сваи является достижение ею заданной несущей способности. Допустимая нагрузка на сваю зависит от глубины, точности и технологии ее погружения, а также от грунтовых условий. Наиболее достоверное значение несущей способности свай дает (опытная забивка свай, пробная забивка свай) их статическое испытание, однако оно трудоемко и длительно. Поэтому в процессе производства работ применяется менее точный, но простой и удобный в исполнении динамический метод испытания свай, сущность которого основана на корреляции зависимости сопротивления сваи и отказа.

Отказом сваи называется глубина погружения сваи в грунт от одного удара молота, определяемая как среднее арифметическое значение величины глубины погружения сваи от определенного числа ударов (залога). Число ударов в залоге для молотов подвесных и одиночного действия принимают равным 10 (для молотов двойного действия и вибропогружателей принимают число ударов или работу механизма в течение 2 мин). Этот фактический отказ сравнивается с расчетным (проектным), который устанавливают проектировщики исходя из инженерно-геологических условий, с целью контроля несущей способности сваи. Отказ замеряется в конце погружения сваи с точностью до 1 мм не менее чем от трех последовательных залогов. Свая, не давшая расчетного (проектного) отказа, должна быть подвергнута контрольной добивке после отдыха и засасывания ее в грунте в течение 6 суток - для глинистых и разнородных грунтов, 10 суток для водона-сыщенных мелких и пылеватых песков. 20 суток для мягко-и текучепластичных глинистых грунтов. Сваи, давшие ложный отказ, или сваи, не забитые на 10 - 15 % длины, следует подвергнуть обследованию с целью устранения причин, затрудняющих забивку. В случае; если отказ при контрольной добивке превышает расчетный, проектная организация должна провести контрольные испытания свай статической нагрузкой и откорректировать проект свайного фундамента или его часть.

Погружение свай может производиться как до проектного отказа, так и до проектной отметки (устанавливается проектом). Последнее возможно только в тех случаях, когда под острием сваи залегают слабые грунты и несущая способность сваи не превышает 200 кН.

Забивные сваи погружают в грунт ударами, вибрацией, вдавливанием и комбинацией этих способов.

На строительной площадке места складирования свай должны быть расположены ближе к путям движения копров, чтобы подъем свай можно было выполнять копром без крана. Передвижение копров должно быть по возможности прямолинейным с минимальным числом поворотов.

Наибольшее распространение получил ударный метод погружения свай. По этому методу для погружения свай используются различные молоты - механические, паровоздушные и дизель-молоты, которые монтируются на копрах или мобильных копровых установках.

Процесс погружения сваи состоит из следующих операций: перемещения сваебойной установки к месту погружения сваи, подтаскивания, подъема, выверки и установки сваи, а затем забивки до проектной отметки или заданного отказа.

При больших объемах свайных работ и применении свай длиной более 12 м используют универсальные копры башенного типа, установленные на платформах-тележках, передвигаемых по рельсам. Такие копры имеют большую грузоподъемность и значительную собственную массу.

Наибольшее, распространение получили в промышленном и гражданском строительстве самоходные сваебойные установки на базе кранов, экскаваторов, тракторов и автомобилей.

Такие установки имеют большую маневренность и применяются для погружения свай длиной 3-10 м. Сваебойные установки позволяют подтаскивать и поднимать сваю, заводить голову сваи в наголовник.

Эффективность забивки сваи за-висит от правильного выбора свайного молота, а именно от правильного определения соотношения его массы и массы сваи. При этом также учитывается вид грунта, в который погружается свая. Масса ударной части свободно падающего молота при забивке сваи длиной 12 м в плотные грунты должна равняться 1,5 массы сваи с наголовником, а при забивке в грунты средней плотности 1,25 этой массы.

Паровоздушные молоты бывают одиночного и двойного действия.

В молотах простого действия энергию привода (пар или сжатый воздух) используют только для подъема ударной части, а падение его совершается под действием собственной массы. В молотах двойного действия энергия привода идет и на движение ударной части вниз, увеличивая ее скорость и, следовательно, силу уда: ра. Молоты одиночного действия имеют массу ударной части 1,25-6 т, число ударов не превышает 30 ударов в минуту. У большинства паровоздушных молотов двойного действия ударной частью является поршень. Число ударов молота в 1 мин может быть более 200 и его можно регулировать автоматически. С помощью молотов двойного действия сваи забивают в вертикальном и наклонном положении.

Дизель-молоты бывают трубчатые и штанговые . Ударная часть штанговых молотов представляет собой подвижный цилиндр, открытый снизу и перемещающийся в направляющих штангах. При падении цилиндра на неподвижный поршень в камере сгорания воспламеняется смесь воздуха и топлива. Энергия, образующаяся в результате сгорания смеси, подбрасывает цилиндр вверх, после чего происходит новый удар и цикл повторяется. Топливо поступает в форсунку камеры сгорания по трубке, проходящей в блоке поршня, с помощью насоса высокого давления, который приводится в действие подвижным цилиндром.

У трубчатых дизель-молотов неподвижный цилиндр, имеющий набот, является направляющей конструкцией. Ударной частью молота является подвижный поршень с головкой. Распыление топлива и воспламенение смеси происходит при ударе головки поршня по поверхности сферической впадины цилиндра, куда подается топливо насосом низкого давления.

Число ударов в 1 мин у штанговых дизель-молотов 50-60, у трубчатых 47-55.

Трубчатые дизель-молоты по сравнению со штанговыми, при одинаковой массе ударной части обладают значительно большей (в 2-3 раза) энергией удара. Для забивки свай длиной 8-10 м рекомендуется принимать следующее отношение массы ударной части молота к массе сваи: при штанговых - 1,25: при трубчатых дизель-молотах 0,5-0,7.

Зимой штанговые дизель-молоты можно запускать при температуре -30 °С, а для запуска трубчатых дизель-молотов уже при температуре до -20°С необходимо применять специальные присадки к топливу и предварительно подогревать молот в течение 20-30 мин. Штанговые молоты в зимних условиях работают более устойчиво.

Наголовники позволяют закрепить сваю в направляющих сваебойной установки и предохранить головы свай от разрушения при ударах молота. При забивке свай подвесными и паровоздушными молотами применяют металлические литые и сварные наголовники с амортизационными прокладками из древесины твердых пород или полимерных материалов. Наголовник подвешивают к молоту за ушки и вместе с ним поднимают и опускают на сваю. Для дизель-молотов применяют наголовники с поворотной рамкой, которые позволяют при опущенном молоте заводить во внутреннюю полость головку сваи, лежащей на грунте. После перемещения копра на требуемую позицию его центрируют по оси забиваемой сваи. Выверяют вертикальность стрел в двух плоскостях, а для забивки наклонных свай устанавливают заданные углы наклона стрел. После этого копер закрепляют натяжными скобами или аутригерами, поднимают молот и закрепляют в верхнем положении. С помощью каната и выносных блоков подтягивают сваю, поднимают и устанавливают ее на место погружения. Верхним концом сваю подводят под наголовник и опускают молот.

После установки сваи на грунт и ее выверки молот медленно опускают на наголовник и под действием массы молота заостренный конец сваи вдавливается в грунт. Для обеспечения правильного направления сваи, первые удары выполняют с небольшой высоты (не более 0,4-0,5 м). При использовании дизель-молотов замеряют время работы молота на каждый метр погружения сваи и число ударов в 1 мин. Важно в начале погружения сваи следить за правильностью погружения сваи в плане- и по вертикали или по заданному углу наклона. Наклонные сваи забивают сваебойными установками, направляющие мачты которых могут быть установлены с уклоном. Мачту устанавливают по указателю наклона, который имеет шкалу с делениями.

В конце забивки с помощью механических и паровоздушных молотов одиночного действия, когда свая погружена приблизительно до проектной отметки или до проектного отказа, забивку производят «залогами» по 10 ударов в каждом. При забивке свай молотами двойного действия и дизель-молотами считать удары затруднительно, поэтому замеряют величину погружения за 1 мин.

При использовании самоходных сваебойных установок продолжительность основных операций (забивка свай) составляет всего 40 % времени, а остальное время расходуется на вспомогательные операции. При применении несамоходных копров и выполнении свайных работ в зимнее время вспомогательные операции занимают 70-80 % общего времени, расходуемого на погружение сваи. Таким образом, механизация вспомогательных операций имеет важное значение для повышения производительности труда.

При вибрационном методе сваю погружают с помощью вибрационных машин, динамическое воздействие от которых позволяет преодолевать сопротивление грунта по боковой поверхности и под острием сваи.

В качестве вибрационных машин используют вибропогружатели, которые подвешивают к мачте сваепогружающей установки и соединяют наголовником со сваей.

Амплитуда колебаний и масса вибросистемы (вибропогружатель, наголовник и свая) должны обеспечить разрушение структуры грунта с необратимыми деформациями.

Вибропогружатели разделяются на высокочастотные (700--1500 мин-1) и низкочастотные (300-500 мин-1).

Высокочастотное предназначены для погружения легких свай в грунты, не оказывающие большого сопротивления, например, в водонасыщенные песчаные и слабые пластичные пылевато-глинистые грунты.

Низкочастотные погружатели применяются при погружении тяжелых железобетонных свай и оболочек диаметром более 1000 мм. Выбор вибропогружателей следует производить исходя из несущей способности сваи и грунтовых условий.

Для низкочастотных вибропогру.-, жателей необходимую вынуждающую силу, кН, определяют по формуле

Вибропогруженин свай в начале должно производиться при небольшой скорости опускания вибропогружателя, без слабины каната, но и без Сильной натяжки. Этим предупреждают возможность отклонения сваи в начальный период погружения.

Вибрационный метод наиболее эффективен при погружении свай в несвязные грунты. Для погружения свай в маловлажные плотные пыле-вато-глинистые грунты необходимо устраивать лидирующие скважины с помощью буровых механизмов. Более универсальным является виброударный метод погружения свай вибромолотами, которые по виду привода разделяются на электрические, пневматические, гидравлические и вибромолоты с двигателями внутреннего сгорания .

Наиболее распространенные пружинные вибромолоты работают следующим образом. При вращении дебалансов в противоположных направлениях вибровозбудитель совершает периодические колебания. Когда зазор между ударником вибровозбудителя и наковальней наголовника меньше амплитуды колебания вибровозбудителя, ударник периодически ударяет по наковальне наголовника сваи. Для более эффективного погружения сваи масса ударной части вибромолота должна быть не менее 50 % массы сваи и составлять 650- 1350 кг.

Статическое вдавливание свай осуществляется путем передачи на сваю повышенной массы, а при вибрационном вдавливании одновременно с действием вибрации. Для погружения свай методом статического вдавливания используют установки, состоящие из двух тракторов, направляющей рамы и опорной плиты.

Процесс вдавливания свай заключается в следующем. Трактор с мачтой устанавливают над местом погружения свай и с помощью лебедки на поверхность земли опускают опорную плиту, на которую затем устанавливают пригрузочный трактор. Предварительно лебедкой сваю помещают в проем мачты трактора, находящегося на грунте. Усилия от лебедки передают на наголовник и он начинает перемещаться по направляющим, вдавливая сваю в грунт.

Установка развивает вдавливающее усилие до 350 кН и может погрузить за смену 10-15 свай длиной до 6 м. Точность погружения свай обеспечивается устройством лидирующих скважин. Недостатками этого метода являются низкая производительность, громоздкость оборудования, что снижает маневренность, и небольшая глубина погружения свай.

Более эффективным является вдавливание свай с помощью вибровдав-ливающих установок, когда свая погружается от комбинированных воздействий вибрации и статической нагрузки. На задней раме вибровдав-ливающей установки расположен электрогенератор, работающий от двигателя трактора, и двухбарабанная лебедка. На передней раме находится направляющая стрела с вибропогружателем и блоки, через которые проходит вдавливающий канат от лебедки. После установки сваи и включения вибропогружателя свая погружается в грунт за счет воздействия вибрации, а также за счет собственной массы, массы вибропогружателя и части массы трактора, передаваемой вдавливающим канатом через вибропогружатель на сваю.

Вибрация создается низкочастотным погружателем с подрессоренной плитой.

Для снижения сопротивления в плотных грунтах сваи погружают с применением подмыва. Воду подают под давлением не менее 0,5 МПа по трубкам диаметром 38-62 мм, укрепленным на свае. Расположение трубок может быть боковым и центральным, когда один одноструйный или многоструйный наконечник размещен по центру погружаемой сваи. При боковом подмыве создаются более благоприятные условия для снижения сил трения по боковой поверхности сваи. В результате подмыва свая погружается под действием собственной массы и массы установленного на ней молота или вибропогружателя. Если сама свая не погружается, ее, не прекращая подмыва, забивают легкими ударами молота или вибрированием. При подмыве нарушается сцепление грунта под острием и по боковой поверхности сваи, что снижает ее несущую способность. Поэтому на последние 1-2 м сваю погружают без подмыва. Дополнительные операции по погружению свай с подмывом приводят к увеличению трудоемкости и стоимости работ, в связи с чем этим методом пользуются довольно редко, главным образом при погружении тяжелых свай длиной более 8 м и оболочек.

При погружении составных свай требуется стыковать сваи в процессе погружения.

В нашей стране разработаны новые конструкции забивных свай, которые находят применение в некоторых грунтовых условиях.

В слабых грунтах применяются булавовидные сваи. Такие сваи были применены на строительстве трассы гидрозолоудаления Красноградской ТЭЦ на заболоченной территории в качестве фундаментов под опоры трубопроводов.

Самораскрывающиеся козловые сваи представляют собой не связанные друг с другом элементы, имеющие скосы нижних концов. Для. погружения таких свай в грунт сваи располагают друг с другом скосами внутрь. По мере погружения свай их нижние концы расходятся вследствие воздействия на скосы, а также на боковые внутренние поверхности раздвигающихся свай реактивных сил грунта.

Характер работы самораскрывающихся свай при внедрении в грунт существенно отличается от работы обычных наклонных свай, так как при погружении каждая ветвь сваи совершает сложное движение, перемещаясь поступательно вниз и поворачиваясь относительно шарнира наголовника.

В плотных песчаных и пылевато-глинистых грунтах с показателем текучести /L<;0,1 не рекомендуется применять самораскрывающиеся сваи из-за больших изгибающих моментов, возникающих при погружении таких свай в грунт.

При погружении свай в сезонно промерзающие грунты приходится выполнять дополнительные операции, обеспечивающие погружение свай на проектную отметку. Если глубина промерзания не превышает 0,5-0,7 м, то при использовании мощных молотов удается пробить сваи через мерзлый слой грунта. Иногда для предотвращения промерзания заблаговременно утепляют места забивки свай опилками, соломой. Если предотвратить промерзание не удалось, то мерзлый слой разбуривают лидирующими скважинами, разрушают виброударными установками или разрушают другими механическими способами, а также производят оттаивание мерзлого грунта. Грунт отогревают огневым способом с помощью термобуров с реактивными горелками или термохимическим. Применяют также глубинный электропрогрев грунта. Иногда используют тепловые электронагреватели (ТЭНы).

места складирования свай должны располагаться ближе к путям движения копров, чтобы захват и подъем сваи можно было выполнять с копров;

перемещение копров должно быть по возможности прямолинейным с минимальным числом поворотов и минимальными холостыми проходами;

по возможности транспортные средства внутри стройплощадки должны двигаться по кольцевой схеме.

В состав ППР свайных работ должны входить следующие материалы: характеристики свайных фундаментов, их объем и схема расположения свай на свайном поле, технологические расчеты, технологические карты, содержание схемы производства работ, графики или циклограммы работ.

Порядок погружения свай определяется ППР и, как правило, зависит от применяемого оборудования для погружения свай и проектного расположения свай.

При прямолинейном расположении свай отдельными рядами или в кустах наибольшее распространение получила рядовая система погружения свай. Спиральная система предусматривает погружение свай концентрическими рядами от краев к центру свайного поля. При сложном расположении свай и больших расстояниях между ними порядок погружения определяется соображениями эффективного использования оборудования. При выборе порядка погружения свай необходимо учитывать возможность сокращения продолжительности операций по подтаскиванию свай.

На выбор метода погружения свай оказывают влияние следующие факторы: физико-механические свойства грунта, вид применяемых свай, глубина погружения, стесненность строительной площадки, конструктивные особенности и производительность применяемого оборудования, а также объем свайных работ. Масса, длина и конструкция сваи оказывают существенное влияние на выбор сваепо-грузочного оборудования.

Сваепогружающие установки должны иметь небольшую массу, максимальную маневренность, простоту монтажа, демонтажа и обслуживания в эксплуатации.

ГОСТ 26433.1-89

УДК 624.046006.354 Группа Ж02

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Система обеспечения точности геометрических

параметров в строительстве

ПРАВИЛА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

Элементы заводского изготовления

System of ensuring geometrical

parameters accuracy in construction.

Rules of measurment. Prefabricated elements

ОКСТУ 0021

Дата введения 1990-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН Зональным научно-исследовательским и проектным институтом типового и экспериментального проектирования жилых и общественных зданий (ЛенЗНИИЭП) Госкомархитектуры, Центральным ордена Трудового Красного Знамени научно-исследовательским и проектным институтом типового и экспериментального проектирования жилища (ЦНИИЭП жилища) Госкомархитектуры, Центральным научно-исследовательским институтом типового и экспериментального проектирования школ, дошкольных учреждений, средних и высших учебных заведений (ЦНИИЭП учебных зданий) Госкомархитектуры

ВНЕСЕН Зональным научно-исследовательским институтом типового и экспериментального проектирования жилых и общественных зданий (ЛенЗНИИЭП) Госкомархитектуры

ИСПОЛНИТЕЛИ

Л.Н.Ковалис (руководитель темы); Г.Б.Шойхет, канд.техн.наук; А.В.Цареградский; Л.А.Вассердам; Д.М.Лаковский; Г.С.Митник, канд.техн.наук; В.В.Тишенко

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 27.02.89 № 32

3. ВЗАМЕН ГОСТ 13015-75 в части методов измерений железобетонных и бетонных изделий

4. В стандарте учтены все положения международных стандартов ИСО 7976/1 и ИСО 7976/2 в части измерений элементов заводского изготовления

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на

Номер пункта, подпункта, приложения

ГОСТ 10-75

ГОСТ 162-80

ГОСТ 164-80

ГОСТ 166-80

ГОСТ 427-75

ГОСТ 577-68

ГОСТ 7502-80

ГОСТ 8026-75

ГОСТ 10528-76

ГОСТ 10529-86

ГОСТ 11098-75

ГОСТ 13837-79

ГОСТ 17435-72

ГОСТ 21779-82

ГОСТ 26433.0-85

1; 5, приложение 3

ТУ 3.824-78

ТУ 2-034-225-87

Настоящий стандарт устанавливает правила выполнения измерений линейных и угловых размеров, отклонений формы и взаимного положения поверхностей деталей, изделий, конструкций и технологической оснастки, изготавливаемых на заводах, строительных площадках и полигонах.

1. Общие требования к выбору методов и средств измерения, выполнению измерений и обработке их результатов следует принимать по ГОСТ 26433.0.

2. Для измерения линейных размеров и их отклонений применяют линейки по ГОСТ 427 и ГОСТ 17435, рулетки по ГОСТ 7502, нутромеры по ГОСТ 10, скобы по ГОСТ 11098, штангенциркули по ГОСТ 166, штангенглубиномеры по ГОСТ 164, индикаторы часового типа по ГОСТ 577, щупы по ТУ 2-034-225 и микроскопы типа МПБ-2 по ТУ 3.824.

В необходимых случаях следует применять средства специального изготовления с отсчетными устройствами в виде индикаторов часового типа, микрометрических головок и линейных шкал: рулетки со встроенным динамометром, длиномеры, нутромеры, скобы и клиновые щупы.

3. Для измерения отклонений форм профиля поверхности применяют нивелиры по ГОСТ 10528, теодолиты по ГОСТ 10529 или поверочные линейки по ГОСТ 8026 совместно со средствами линейных измерений (линейками, индикаторами, штангенинструментом и т. д.), а также оптические струны, визирные трубы, оптические плоскомеры и гидростатические высотомеры по действующим техническим условиям. Могут применяться также средства специального изготовления: контрольные рейки, отвес-рейки, струны из стальной проволоки диаметром 0,2-0,5 мм или синтетической лески диаметром 0,8-1,0 мм.

4. Угловые размеры проверяют угломерами, а их отклонения, выраженные линейными единицами, - линейками и щупами с применением угольников, калибров, шаблонов.

5. В зависимости от материала, размеров и особенностей формы элементов могут применяться также не предусмотренные настоящим стандартом средства, обеспечивающие требуемую ГОСТ 26433.0 точность измерений.

6. Схемы измерений размеров и их отклонений, а также отклонений форм приведены в приложении 1.

При этом соответствие реального взаимного положения поверхностей элемента (линий, осей) установленным требованиям определяют измерением соответствующих линейных и угловых размеров и их отклонений. Положение проемов, выступов, вкладышей, закладных деталей и других характерных деталей элемента проверяют измерением указанных в рабочих чертежах размеров между этими деталями или между деталями и гранями (линиями, точками) элемента, принятыми за начало отсчета.

7. Если в стандартах, технических условиях или рабочих чертежах не установлены места измерений размеров элемента, то эти места определяют в соответствии с настоящим стандартом. Длину, ширину, толщину, диаметр, а также угловые размеры или их отклонения измеряют в двух крайних сечениях элемента на расстоянии 50-100 мм от краев, а при длине или ширине элемента более 2,5 м - и в соответствующем среднем его сечении.

Отклонения от прямолинейности на лицевой поверхности плоских элементов измеряют не менее чем в двух любых сечениях элемента, как правило, в направлении светового потока, падающего на эту поверхность в условиях эксплуатации.

Отклонения от прямолинейности боковых граней плоских элементов измеряют в одном из сечений вдоль каждой из граней, а для элементов цилиндрической формы - вдоль не менее двух образующих, расположенных во взаимно перпендикулярных сечениях.

Отклонения от прямолинейности ребра элемента измеряют в сечениях по обеим поверхностям, образующим это ребро, на расстоянии не более 50 мм от него или непосредственно в месте пересечения этих поверхностей.

8. Значения предельных погрешностей измерений, которые могут быть использованы при выборе методов и средств измерений, приведены в приложении 2.

9. Примеры определения отклонений от плоскостности приведены в приложении 3.

Приложение 1

Схемы измерений

Таблица 1

Наименование измеряемого параметра, метода и средства измерения

Схема

Формулы для вычисления измеряемого параметра

1. Линейные размеры и их отклонения

1.1. Длина, ширина, толщина элементов и их частей измеряются:

а) между двумя фиксированными точками

б) между точкой и прямой или плоскостью (между двумя прямыми или плоскостями) методом покачивания

Минимальный отсчет

в) между точкой и прямой или плоскостью методом построения перпендикуляра при помощи угольника

1.1.1. Прямое измерение размера:

а) линейкой

; (1)

, (2)

где - значение искомого размера, определяемого в результате измерения (действительный размер);

б) рулеткой с натяжением вручную (при расстоянии не более 10 м) или динамометром. При наличии в местах измерений дефектов, мешающих снятию отсчетов, применяют выравнивающие приспособления

Номинальный размер;

Действительное отклонение;

Начальный и конечный отсчеты по шкале средства измерения

в) штангенциркулем

г) длиномером с устройством для установки и закрепления на изделии конца рулетки с начальным отсчетом

Примечание. Разнотолщинность определяют как разность между наибольшим и наименьшим из измеренных значений толщины одного изделия.

То же

1.1.2. Прямое измерение отклонения средствами измерения, настроенными на номинальный размер:

при

, ;

, (3)

где - начальный отсчет, соответствующий номинальному размеру; устанавливается равным нулю или другому значению при настройке прибора на измерение

а) нутромером

б) скобой

в) длиномером с определением отклонения по шкале с нониусом

г) индикатором часового типа, установленным на стенде

1.2. Диаметр

1.2.1. Прямое измерение диаметра методом покачивания рулеткой, линейкой, штангенциркулем

где - максимальный отсчет из возможных отсчетов

1.2.2. Прямое измерение отклонения методом покачивания скобой, нутромером, настроенными на номинальный размер

1.2.3. Косвенное измерение диаметра:

(4)

а) методом опоясывания рулеткой

б) методом измерения хорды и высоты сегмента штангенциркулем с пределами измерения 320-1000 мм

Примечание. Овальность определяют как разность между наибольшим и наименьшим из измеренных значений диаметра в одном поперечном сечении.

(5)

где - длина хорды,

Высота сегмента (известна или измеряют при известном

1.3. Расстояния между точками (осями), расположенными на различных гранях элемента

1.3.1. Прямое измерение размера рулетками, линейками:

а) методом проектирования одной из точек (осей) на линию измерения при помощи разметки

б) методом проектирования двух точек на линию измерения при помощи угольников, отвесов или оптических центриров

1 - линия измерения

1.3.2. Косвенное измерение отклонения точки от оси линейкой методом проектирования точки на линию измерения при помощи угольника или разметки

(6)

, (7)

где и - размеры, полученные прямым измерением

1.4. Межосевое расстояние

а) (8)

1.4.1. Косвенное измерение при помощи линейки, штангенциркуля, рулетки

б) (9)

где и - размеры, получаемые прямым измерением

1.5. Длина, ширина и глубина (высота) трещин, зазоров, раковин, околов, наплывов

1.5.1. Прямое измерение длины, ширины:

а) линейкой

б) микроскопом

в) палеткой (прозрачная пластина размером 200х200 мм с сеткой квадратов 5х5 мм)

К - число раковин в квадрате

К = 3,

мм

г) щупом

1.5.2. Прямое измерение глубины, высоты штангенциркулем ШЦ-1

1.5.3. Косвенное измерение линейкой

2. Угловые размеры и их отклонения

2.1. Прямое измерение углового размера угломерами

2.2. Прямое измерение отклонения углового размера в линейной мере на длине L угольником с линейкой или щупом (отклонения от перпендикулярности, косины реза и т.п.)

1 - проверяемое изделие; 2 - угольник; 3 - щуп, концевая мера, линейка

3. Отклонения формы профиля или поверхности* (прямолинейности и плоскостности, в т.ч. волнистость, прогиб, выпуклость, вогнутость и т.п.)

____________

* Полученные измерениями по настоящему стандарту значения отклонений от прямолинейности и плоскостности сравнивают с соответствующим допуском.

3.1. Отклонения от прямолинейности

3.1.1.

Определение отклонения от прямолинейности на всей длине элемента при помощи струны на опорах равной высоты, задающей линию отсчета, и линейки.

Масса подвешиваемого груза для металлической струны диаметром 0,2-0,5 мм на длине до 20 м - не менее 10 кг; для капроновой струны диаметром 0,8 - 1,0 мм на длине до 20 м - не менее 2 кг

1 - проверяемая поверхность; 2 - струна; 3 - опоры для натяжения струны; 4 - условная прямая; 5 - линейка для снятия отсчета

Отклонение от прямолинейности

принимают равным:

сумме абсолютных значений наибольшего из всех положительных и наибольшего из всех отрицательных измеренных в различных точках отклонений

если они имеют разные знаки;

наибольшему по абсолютной величине из всех измеренных отклонений

если они имеют одинаковые знаки

Измерения проводят в размеченных на поверхности элемента точках в количестве, определяемом в зависимости от длины изделия

(10)

где - расстояние от линии отсчета до проверяемой поверхности в точках опоры;

То же, в промежуточных точках разметки

3.1.2. Определение отклонения от прямолинейности на участке элемента при помощи поверочной линейки или контрольной рейки на опорах равной высоты, задающих линию отсчета, и линейки, индикатора или щупа

1 - проверяемая поверхность; 2 - поверочная линейка, рейка; 3 - опорная призма; 4 - условная прямая; 5 - линия отсчета; 6 - индикатор

То же

При установке контрольной рейки непосредственно на поверхность изделия

3.1.3. Определение отклонения от прямолинейности на всей длине элемента при помощи нивелира или теодолита, задающего линию отсчета, и линейки. Точность положения проверяемой поверхности относительно линии отсчета не регламентируется

2 - нивелир; 3 - линия отсчета;

4 - условная прямая; 5 - линейка

(11)

где - расстояния между начальной и конечной и начальной и промежуточной точками разметки, соответственно; при равном шаге разметки и равны соответствующему числу шагов

3.2. Отклонения от плоскостности

3.2.1. Определение отклонения в угловой точке прямоугольного элемента относительно условной плоскости, проведенной через три другие угловые точки (пропеллерность или скручивание):

а) методом прямого измерения линейкой или клиновым щупом отклонения в угловой точке элемента, установленного на четыре опоры, расположенные в одной плоскости (условной)

б) методом измерений линейкой расстояний от каждой из четырех угловых точек элемента до плоскости отсчета с последующим вычислением отклонения от условной плоскости.

В зависимости от положения элемента плоскость отсчета задается горизонтально нивелиром или вертикально теодолитом или двумя отвесами (отвес-рейками). Точность положения элемента относительно плоскости отсчета не регламентируется и определяется длиной измерительной линейки

1 - отвес; 2 - шкала для отсчета

(12)

При

(13)

3.2.2. Определение отклонения от условной плоскости по всей поверхности элемента:

Отклонение от плоскостности принимают равным наибольшему результату из измерений в четвертой угловой точке и в точке пересечения диагоналей.

а) методом прямого измерения индикатором часового типа или щупом отклонения поверхности от условной плоскости, проведенной через три точки

1 - объект измерения;

2 - поверочная плита; 3 - щуп, индикатор

Индикаторы настраивают на нулевой отсчет по поверочной плите

б) методом измерения линейкой расстояния от размеченных на поверхности элемента точек до линии отсчета, заданной струной, поверочной линейкой или контрольной рейкой на опорах равной высоты, устанавливаемых в размеченных точках по краям элемента. Точки, в которых производят измерения, располагают на контролируемой поверхности в местах пересечения продольных и поперечных сечений элемента из расчета 4-10 сечений на каждой его стороне в зависимости от размеров элемента, а также в местах пересечения проекций диагоналей на поверхности элемента

1 - проверяемая поверхность;

2 - струна; 3 - линейка; 4 - опоры для натяжения струны

Отклонение от плоскостности

принимают равным:

в) методом измерения линейкой расстояний от размеченных на поверхности элемента точек до плоскости отсчета, заданной горизонтально нивелиром или вертикально теодолитом. Точки, в которых производят измерения, располагают на контролируемой поверхности в местах пересечения продольных и поперечных сечений элемента из расчета 4-10 сечений на каждой его стороне в зависимости от размеров элемента. Точность положения элемента относительно плоскости отсчета не регламентируется и определяется длиной измерительной линейки

1 - проверяемая поверхность;

2 - линейка; 3 - нивелир

Отклонение от плоскостности

принимают равным:

сумме абсолютных значений наибольшего из всех положительных и наибольшего из всех отрицательных отклонений

в размеченных точках, если они имеют разные знаки;

наибольшему по абсолютной величине из всех отклонений

если они имеют одинаковые знаки.

Формулы и пример вычисления отклонений

в каждой из размеченных точек от условной плоскости, проведенной через одну из диагоналей параллельно другой диагонали, приведены в приложении 3.

3.3. Отклонения от заданного профиля или поверхности сложной формы

Измерения производят в размеченных на поверхности элемента точках и местах пересечения, характерных для контролируемой поверхности продольных и поперечных (радиальных и круговых и т.п.) сечений

Отклонение реального профиля от проектного принимают равным наибольшему по величине из всех измеренных значений зазора в контролируемом сечении

3.3.1. Прямое измерение линейкой, индикатором или щупом отклонений реального профиля от шаблона

1 - проверяемая поверхность;

2 - шаблон; 3 - линия отсчета;

4 - щуп; 5 - сечения, в которых устанавливают шаблон; 6 - точки разметки на шаблоне, в которых проводят измерение зазора

3.3.2. Определение отклонений от проектных значений действительных координат характерных точек реальной поверхности элемента, установленного в рабочее положение. Измерения выполняют прямыми или косвенными методами с использованием нивелира и рейки или струны и линейки, гидростатического высотомера и т.д.

(19)

где - действительное значение координаты;

Номинальное значение координаты;

Расстояния, соответствующие номинальным значениям координаты, размечаются от точки, принятой за начало координат по горизонтальной оси

ПРИЛОЖЕНИЕ 2

Справочное

Предельные погрешности измерений

Предельные погрешности измерений с применением рекомендуемых средств измерений приведены в табл. 2-4 и рассчитаны для температуры воздуха = (20 ± 8)°С и разности температур объекта и средства измерения, равной 2 °С. Натяжение рулетки осуществляется вручную.

Таблица 2

Предельные погрешности измерения линейных размеров

Предельные погрешности измерения, мм

Интервалы номинальных

размеров, мм

Штанген-инструмент, величина отсчета по нониусу 0,1 мм

Нутромеры, скобы, величина отсчета по индикатору, микрометру, нониусу 0,01 мм

Линейки металли-ческие, цена деления 1,0 мм

Штангенцир-куль, метод хорды и высоты сегмента

Рулетки 3-го класса, цена деления 1,0 мм

Длиномеры, величина отсчета по нониусу 0,1 мм

Св. 1 до 50

0,1

0,4

" 50 " 200

0,2

0,02

0,4

" 200 " 500

0,2

0,03

0,5

0,6

0,5*

" 500 " 1000

0,3

0,05

0,5

1,0

0,5*;0,5**

" 1000 " 4000

0,5

0,2

1,4

1,5*;1,0**

0,8

" 4000 " 6000

0,3

2,5

2,0*;1,5**

1,0

" 6000 " 10000

0,4

4,0

2,5*;2,0**

1,5

" 10000 " 16000

3,5*

2,5

" 16000 " 25000

4,5*

3,0

_____________

* Приведены погрешности измерения длин и диаметров.

** Погрешности измерения диаметров методом опоясывания.

Таблица 3

Предельные погрешности измерения параметров формы и

взаимного положения поверхностей

Предельные погрешности измерений, мм

Интервалы номинальных

Поверочная линейка

Рейка

Струна метал- лическая или капроновая

Оптическая струна, плоскомер, зрительные трубы типа

Нивелир

Теодо-лит

Средства измерения специального изготовления

размеров, мм

с отсчетом по

ППС, гидроста-

Н05

Н-3, НЗК

Т-2, Т5

инди-

ли-

ли-

микро-

ли-

тический

катору

нейке

нейке

скопу

нейке

уровень, микрони-велир,

Отсчет по линейке с ценой деления

1,0 мм

НПЛ-1

НПР-1

с ценой деления, мм

уровень

0,01

1,0

1,0

0,01

1,0

До 100

0,02

0,02

Св. 100 до 200

" 200 " 1000

0,08

0,4

0,4

0,01

" 1000 " 2000

0,08

0,4

0,4

0,05

0,3

0,02

" 2000 " 3000

0,15

0,4

0,1

0,4

0,03

0,5

1,0

" 3000 " 5000

0,1

0,4

0,05

0,5

1,0

" 5000 " 8000

0,2

0,4

0,06

0,2

0,8

1,0

" 8000 " 10000

0,2

0,5

0,1

0,2

0,8

1,0

" 10000 " 20000

0,3

Настоящий стандарт устанавливает методы измерения толщины органических покрытий, нанесенных на окрашиваемую поверхность. Стандарт не распространяется на металлические покрытия. Некоторые из приведенных методов могут быть применены для измерения толщины свободных пленок. Методы, области их применения и точность измерений приведены в .

Настоящий стандарт применяется для определения толщины лакокрасочных покрытий следующими методами:

№ 3 - Измерение толщины высушенного покрытия приборами, использующими механический контакт;

№6 - Магнитный метод;

№ 7 - Метод вихревых токов.

Стандарт содержит определения терминов, касающихся техники измерения толщины покрытий.

В настоящем стандарте дополнительные требования, отражающие потребности экономики страны, выделены курсивом.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.362-79 Государственная система обеспечения единства измерений. Измерение толщины покрытий. Термины и определения

ГОСТ 2789-73* Шероховатость поверхности. Параметры и характеристики

ГОСТ 8832-76* (ИСО 1514-84) Материалы лакокрасочные. Методы получения лакокрасочного покрытия для испытаний

Методы измерения толщины покрытий

Таблица 1

Номер и наименование метода

Средство измерений и область применения

Основная погрешность* и точность измерений

Примечание

№ 1 - Определение толщины сырого слоя

А. Калиброванная гребенка

Измерения дают приблизительное значение толщины сырого слоя

В. Колесный толщиномер

Погрешность ±2,5% + 1 мкм

Метод можно использовать в лаборатории и на месте окрашивания

С. Взвешивание для измерения толщины сырого слоя на свежеокрашенной поверхности

Воспроизводимость ±15 мкм

Метод № 1С можно использовать также для определения толщины высушенного покрытия, но только в лаборатории

№ 2 - Определение толщины высушенного покрытия путем расчета соотношения между массой и площадью высушенного покрытия

Применяют для мягких покрытий, толщина которых не может быть измерена приборами с зажимными элементами или измерительным стержнем

Измерения дают неточные результаты

Обеспечивает проверку, когда значение толщины находится в заданных пределах. Покрытие остается неповрежденным

№ 3 - Измерение толщины высушенного покрытия приборами, использующими механический контакт

А. Микрометрический метод. Применяют для измерений на практически плоских пластинах и окрашенных поверхностях

Погрешность ±2 мкм. Воспроизводимость ±30% - для тонких покрытий; ±20% - для толстых покрытий

Покрытие должно быть достаточно твердым, чтобы противостоять вдавливающему усилию при контакте с зажимами микрометра. Покрытие разрушается в процессе испытания. Если пленка не отделена от основания, толщина покрытия должна быть более 25 мкм

В. Метод с применением многооборотного индикатора. Испытуемые пластины или окрашенные поверхности должны быть практически плоскими или иметь кривизну в одном направлении

Воспроизводимость ± 10% с нижним пределом 2 мкм

Покрытие должно быть достаточно твердым, чтобы противостоять вдавливающему усилию при контакте с измерительным стержнем

№ 4 - Измерение толщины высушенного покрытия профилометрическим методом

Покрытие должно быть достаточно твердым, чтобы противостоять вдавливающему усилию пера профилометра. Покрытие разрушается в процессе испытания

№ 5 - Измерение толщины высушенного покрытия с использованием микроскопа

А. Микроскопическое исследование поперечного сечения. Рекомендуется как арбитражный метод измерения для покрытий на основаниях со сложным профилем, например на поверхностях после дробеструйной обработки

Погрешность ± 2 мкм. Воспроизводимость ±10%

Участок окрашенного изделия вырезают и закрепляют на смоле. Покрытие разрушается в процессе испытания

В. Метод вырезки клина. Метод не применяют к хрупким и рыхлым покрытиям. Методы А и В можно применять при определении толщины отдельных слоев в многослойном покрытии

Воспроизводимость ±10% с нижним пределом 2 мкм

Чтобы вырезать пленку, нужен специальный режущий инструмент или сверло. Покрытие в процессе измерения разрушается

С. Метод измерения профиля поверхности. Применяют к прозрачным покрытиям и покрытиям, которые могут легко отделяться от основания

Воспроизводимость ±10%

Для исследования профиля покрытия применяют специальный микроскоп (микроскоп светового сечения). Прозрачные покрытия не разрушаются

№ 6 - Магнитные методы

Для магнитных металлических оснований:

А. Магнитоиндукционный принцип

Погрешность ±2% + 1 мкм. Воспроизводимость ±10%

Покрытие должно быть достаточно твердым, чтобы выдерживать давление датчика

В. Принцип отрыва постоянного магнита

Погрешность ±5% + 1 мкм

Измерения можно проводить на месте окрашивания

№ 7 - Метод вихревых токов

Для немагнитных металлических оснований

Погрешность ±2% + 1 мкм Воспроизводимость ±10%

Приборы действуют по принципу вихревых токов. Покрытие должно быть достаточно твердым, чтобы выдержать давление датчика. Измерения можно проводить на месте окрашивания

№ 8 - Неконтактные методы

Применяют, когда контакт инструмента с покрытием нежелателен. Применяют для измерений на практически плоских окрашенных поверхностях

Воспроизводимость ±10%

В приборах используют принцип обратного рассеяния b -частиц (метод № 8А) или явление рентгеновской флуоресцентности (метод № 8Б). Для получения точных результатов покрытия должны быть гомогенными

№ 9 - Гравиметрический (растворения) метод

Применяют для измерения толщины покрытий на основаниях с неоднородным профилем (например стальные пластинки после дробеструйной обработки) и для покрытий на полимерных основаниях, если последние не подвержены действию лакокрасочных растворителей

Массу покрытия измеряют путем растворения покрытия без растворения основания. Среднее значение толщины покрытия определяют делением значения массы покрытия на плотность и площадь покрытия

№ 10 - Определение толщины высушенного покрытия на стальных основаниях, подвергнутых дробеструйной обработке

Для высушенных покрытий на магнитных металлических основаниях с шероховатой поверхностью (после дробеструйной обработки)

В приборах используют явление магнитной индукции. Измерения можно проводить на месте окрашивания. В некоторых случаях можно также применять метод № 5А или метод № 9

*Погрешности взяты из инструкций соответствующих промышленных приборов.

Примечание - Ряд из указанных в таблице методов можно использовать для измерения толщины свободных пленок.

3 Дополнительная информация

Для каждого конкретного метода измерений, указанного в настоящем стандарте, необходима следующая дополнительная информация, которая должна быть взята из международного стандарта или национального стандарта, или другого документа, касающегося испытываемого материала, им, по возможности, она должна быть предметом договора между заинтересованными сторонами:

Метод нанесения материала на окрашиваемую поверхность и указание количества слоев;

Однослойное покрытие или многослойная лакокрасочная система;

Продолжительность и условия сушки (естественной или горячей), старение покрытий (если имеет место) перед измерением;

Метод измерения толщины покрытия ();

Ответственная зона окрашенного образца и, при необходимости, количество измерений.

4 Определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

4.1 толщина покрытия: Расстояние между поверхностью покрытия и окрашиваемой поверхностью.

Примечание - Значение толщины покрытия в определенной степени зависит от выбранного метода измерения. Получение точного результата возможно в случае, если окрашиваемая поверхность и поверхность покрытия ровные и гладкие. На практике ни окрашиваемая поверхность, ни поверхность покрытия не бывают ровными. Во многих случаях шероховатость превышает 10 % толщины покрытия. Эта шероховатость влияет на результаты измерений, полученные различными методами. Для каждого метода это влияние имеет свои специфические особенности. Поэтому результаты измерений одного и того же образца, выполненные разными методами, могут значительно отличаться друг от друга. Результаты измерения толщины покрытия следует сопровождать указанием метода измерений, типа использованного прибора и, если известно, погрешности.

4.2 ответственная часть поверхности: Часть окрашенного или подлежащего окрашиванию изделия, для которой покрытие играет существенную роль для осуществления рабочих функций и/или придания декоративного вида.

4.3 контрольный участок: Участок ответственной части поверхности, в пределах которого должно быть выполнено необходимое количество отдельных измерений.

4.4 точка измерения: Место, в котором проводят единичное измерение. В настоящем стандарте точку измерения (место испытания) определяют в зависимости от метода измерения следующим образом:

Для гравиметрических методов (растворения) - место, где покрытие удаляют;

Для методов микроскопического исследования - место, в котором проводят единичное измерение;

Для неразрушающих методов - площадь, занимаемая зондом, или участок поверхности, влияющий на показания прибора.

4.5 локальная толщина покрытия: Среднее значение результатов определенного количества измерений, выполненных в пределах данного контрольного участка.

4.6 наименьшая локальная толщина: Наименьшее значение локальной толщины на ответственной части поверхности данного изделия.

4.7 наибольшая локальная толщина: Наибольшее значение локальной толщины на ответственной части поверхности данного изделия.

4.8 средняя толщина: Среднее арифметическое значение результатов испытаний определенного количества измерений локальной толщины, равномерно распределенных по ответственной части покрытия, или результат гравиметрического определения толщины.

4.9 толщина сырого слоя: Толщина слоя лакокрасочного материала, измеренная сразу после нанесения.

5 Общие требования

5.1 Основные положения

В настоящем стандарте приведены сведения о количестве и расположении точек измерения при определении толщины лакокрасочного покрытия на стандартных пластинках для испытаний, подготовленных по ГОСТ 8832-76*. На других окрашиваемых поверхностях и окрашенных изделиях количество и расположение точек измерения должно быть выбрано таким образом, чтобы измерения давали в результате воспроизводимые значения толщины покрытия. Выбор этих условий должен быть предметом договора заинтересованных сторон.

При использовании приборов следует соблюдать инструкции изготовителей.

Приборы следует проверять на воспроизводимость. Регулярно следует проводить калибровку прибора и проверять состояние наконечника датчика.

Следует убедиться в том, что давление наконечника датчика не оказывает значительного влияния на результаты измерений.

5.2 Шероховатость поверхностей

Шероховатость окрашиваемой поверхности влияет на определение толщины покрытия. При использовании оптических методов рекомендуется заранее оговаривать контрольные линии или участки.

В случае использования неразрушающего метода контроля калибровку прибора следует проводить на той же поверхности, которую в окрашенном виде используют для испытания.

Для стальных оснований, прошедших дробеструйную обработку, применяют особые условия (метод № 10).

5.3 Краевой эффект

На показания некоторых приборов влияет присутствие кромок на образце. Существуют приборы, которые можно откалиброватъ таким образом, что они будут учитывать краевой эффект. Измерения проводят на расстоянии более 25 мм от кромки изделия или образца или на таком расстоянии от кромки, на которое откалиброван прибор.

5.4 Кривизна поверхности

Некоторые приборы чувствительны к кривизне поверхности, поэтому их калибровку надо проводить на поверхностях с такой же кривизной, как у образцов, подлежащих испытанию.

6 Метод № 3 - Измерение толщины высушенного покрытия приборами, использующими механический контакт

Измерения проводят на покрытиях, высушенных до такой степени, что они могут выдержать действие зажимных элементов микрометра или измерительного стержня многооборотного индикатора без образования видимых повреждений.

Этот метод пригоден для плоских окрашенных поверхностей и изделий, а также изделий с круглым сечением (например проволока) и для покрытий, которые можно удалить растворителем или механическим способом.

6.1 Метод № 3А - Измерение толщины покрытия микрометрическим методом

6.1.1 Общая часть

Этот метод позволяет измерять толщину высушенного покрытия средствами измерения с пределом погрешности измерений 5 мкм.

6.1.2 Средства измерений

Любой микрометр, снабженный трещоткой, с пределом погрешности измерения 5 мкм или менее ().

6.1.3 Порядок проведения испытаний

6.1.3.1 Выбирают точки, в которых должны быть проведены измерения. Точки измерения должны быть свободны от дефектов поверхности и расположены на расстоянии не менее 20 мм от края лакокрасочного покрытия на расстоянии ≈ 50 мм друг от друга.

При работе с большими окрашенными поверхностями количество точке измерения и их расположение по поверхности должно быть таким, чтобы получить достоверные данные, характеризующие толщину покрытия на всей окрашенной площади.

Вокруг каждой точки измерения легким нажимом очерчивают окружность диаметром ≈ 10 мм и ставят рядом порядковый номер.

6.1.3.2 Окрашенный образец закрепляют так, чтобы все испытуемые точки были доступны для измерения микрометром ().

6.1.3.3 Микрометр располагают так, чтобы пятка микрометра находилась в соприкосновении с обратной стороной измеряемого образца непосредственно под первой точкой измерения. Медленно вращая барабан микрометрического винта, перемещают измерительный стержень к исходной точке до отказа, при этом измерительный стержень далее не двигается при повороте трещотки.

Отмечают показания микрометра, пользуясь в случае необходимости зеркалом. Вносят результаты измерений в протокол вместе с номером точки измерения.

Ослабляют зажимы, снимают микрометр и повторяют всю процедуру в следующей точке измерения.

6.1.3.4 Осторожно удаляют покрытие в пределах окружности в каждой точке измерения с помощью соответствующего растворителя или механическим способом, стараясь при этом не стереть номер. Для этого испытуемый участок закрывают круглым кусочком фильтровальной бумаги и наносят на него несколько капель соответствующего растворителя.

Измеряют толщину основания, повторив процедуры и для каждой точки измерения.

Примечание - Толщину основания можно измерить до окраски, чтобы потом не нарушать целостности покрытия.

6.1.4 Обработка результатов

6.1.4.1 Вычисляют толщину покрытия в каждой точке измерения путем вычитания показаний, полученных после удаления покрытия, из показаний, полученных до него.

6.1.4.2 Вычисляют среднее арифметическое значение толщины покрытия на испытуемом образце с пределом погрешности 5 мкм или менее (в зависимости от точности микрометра).

6.2 Метод № 3В - Определение толщины покрытий с применением многооборотного индикатора

6.2.1 Общая часть

Этот метод позволяет измерять толщину высушенного покрытия средствами контроля в пределах точности измерения 2 мкм.

6.2.2 Средства измерения

Многооборотный индикатор или любой другой индикатор, предназначенный для линей: измерений, имеющий измерительный стержень для механического контакта с поверхностью изделия, снабженный механическим, оптическим или электронным отсчетным устройством, с точное измерения в интервале 2 мкм и смонтированный на жестком основании ().

6.2.3 Порядок проведения испытаний

6.2.3.1 Выбирают точки, в которых должны быть проведены измерения. Точки измерения должны быть свободны от дефектов поверхности и расположены на расстоянии не менее 20 мм края лакокрасочного покрытия на расстоянии ≈ 50 мм друг от друга.

При работе с большими окрашенными поверхностями количество точек измерения и их расположение по поверхности должно быть таким, чтобы получить достоверные данные, характеризующие толщину покрытия на всей окрашенной площади.

Вокруг каждой точки измерения легким нажимом очерчивают окружность диаметром ≈ 10 мм и ставят рядом порядковый номер.

6.2.3.2 Устанавливают окрашенный образец таким образом, чтобы ни давление измерительного стержня, ни операции по удалению покрытия не вызывали изменения его положения.

Устанавливают индикатор вертикально на образец так, чтобы измерительный стержень оказался над центром первой точки измерения. Осторожно опускают измерительный стержень до плотного соприкосновения с покрытием. Записывают в протокол испытаний показания индикатора и номер точки измерения. Измерительный стержень опускают на покрытие несколько раз, регистрируя показания. Убирают измерительный стержень и удаляют лакокрасочное покрытие в пределах окружности в каждой точке измерения соответствующим растворителем или механическим способом. Для этого испытуемый участок закрывают круглым кусочком толстой фильтровальной бумаги и наносят на него несколько капель соответствующего растворителя.

Осторожно опускают на то же место измерительный стержень до обеспечения плотного контакта с окрашиваемой поверхностью и регистрируют показания. Проводят измерения несколько раз.

6.2.3.3 Повторяют процедуру в каждой точке измерения.

6.2.4 Обработка результатов

6.2.4.1 Вычисляют толщину покрытия в каждой точке измерения путем вычитания показаний, полученных после удаления покрытия, из показаний, полученных до него.

6.2.4.2 Вычисляют среднее арифметическое значение толщины покрытия на испытуемом образце с точностью до 2 мкм.

7 Метод № 6 - Магнитный метод ( )

7.1 Общая часть

Этот метод относится к разряду неразрушающих и используется для определения толщины немагнитных высушенных покрытий на магнитных металлических основаниях.

7.2 Методы измерения

7.2.1 Метод № 6А - Метод магнитной индукции

Приборы, используемые в этом методе, измеряют сопротивление магнитного потока, проходящего через покрытие и основание.

7.2.2 Метод № 6В - Метод отрыва постоянного магнита

Приборы, используемые в этом методе, измеряют магнитное притяжение между постоянным магнитом и основанием, при этом покрытие влияет на величину магнитного притяжения.

7.3 Калибровка приборов

7.3.1 Общие положения

Перед работой каждый прибор должен быть откалиброван в соответствии с инструкцией по применению с использованием калибровочных эталонов. Для приборов, которые не могут быть откалиброваны, определяют отклонение от номинального значения путем сравнения с калибровочными эталонами и учитывают это отклонение для всех измерений.

В процессе эксплуатации прибора калибровку следует проводить через короткие интервалы времени.

7.3.2 Калибровочные эталоны

Калибровочные эталоны известной и однородной толщины применяют или в виде фольги или пластин, или как окрашенные эталоны с указанными на них значениями толщины, поверенными в соответствии с действующими государственными эталонами.

Поверхностные и магнитные характеристики металла основания окрашенных калибровочных эталонов должны быть подобны аналогичным показателям образца для испытаний.

Толщина основания образца для испытаний и калибровочного эталона должна быть одинаковой, если не превышено критическое значение, указанное в 7.4.2.

7.4 Порядок проведения испытаний

7.4.1 Общая часть

При эксплуатации приборов необходимо следовать инструкциям предприятий-изготовителей. Проверяют калибровку прибора () на испытательном стенде перед каждым использованием и через короткие интервалы (не мене одного раза в час), чтобы обеспечить точность измерений.

7.4.2 Толщина металлическогооснования

Для каждого прибора существует критическое значение толщины основания, выше которого увеличение толщины уже не влияет на результаты измерений.

Проверяют, превышает ли толщина основания образца критическое значение. Если результат отрицательный, наращивают толщину за счет соединения с таким же металлом или получают подтверждение проведения калибровки на калибровочном эталоне такой же толщины и с такими же магнитными свойствами, как у образца для испытаний,

7.4.3 Количество измерений

Учитывая обычный разброс показаний, необходимо проводить несколько измерений на каждом контрольном участке (например три измерения), чтобы получит локальную толщину как среднее арифметическое значение результатов ряда измерений. Количество и распределение контрольных участков может быть предметом обсуждения заинтересованных сторон.

8 Метод № 7 - Метод вихревых токов ( )

8.1 Общая часть

С помощью этого метода, относящегося к разряду неразрушающих, можно определять толщину непроводящих высушенных покрытий на немагнитных металлических основаниях.

8.2 Метод измерения

Вихретоковые приборы работают по принципу образования в системе датчика прибора высокочастотного электромагнитного поля, вызывая вихревые токи в проводнике, на котором расположен датчик, причем амплитуда и фаза этих токов являются функцией толщины непроводящего покрытия, находящегося между проводником и датчиком.

8.3 Калибровка приборов

8.3.1 Общие положения

Перед работой каждый прибор должен быть откалиброван в соответствии с инструкцией по применению с использованием калибровочных эталонов.

В процессе работы калибровку прибора проверяют через короткие интервалы.

8.3.2 Калибровочные эталоны

Калибровочные эталоны известной и однородной толщины применяют в виде фольги или как окрашенные эталоны с указанными на них значениями толщины, поверенными в соответствии с действующими государственными эталонами.

Калибровочную фольгу обычно изготовляют из подходящих для этого назначения пластических материалов. Поскольку во время измерений такие эталоны подвергают деформации, их следует часто менять.

Окрашенные эталоны состоят из непроводящих покрытий известной и равномерной толщины с хорошей адгезией к основанию.

8.4 Порядок проведения испытаний

8.4.1 Общая часть

При эксплуатации приборов необходимо следовать инструкциям предприятий-изготовителей, Проверяют калибровку прибора () на испытательном стенде перед каждым использованием и через короткие интервалы (не менее одного раза в час), чтобы обеспечить точность измерений.

8.4.2 Количество измерений

Учитывая обычный разброс показаний, необходимо проводить несколько измерений на каждом контрольном участке (например три измерения), чтобы получить локальную толщину как среднее арифметическое значение результатов ряда измерений. Количество и распределение контрольных участков может быть предметом обсуждения заинтересованных сторон.

9 Протокол испытаний

Протокол испытаний должен содержать:

Сведения о материале, из которого изготовлено покрытие, подлежащее измерению;

Дополнительную информацию по ;

Результат измерения (отдельные значения толщины и ее среднее значение со стандартным отклонением; можно указать отдельные значения толщины вместе с минимальными и максимальными значениями);

Любое отклонение от стандартной процедуры;

Дату проведения измерений.

ПРИЛОЖЕНИЕ А
(справочное)
Технические характеристики приборов для определения толщины лакокрасочных покрытий

Таблица А.1

Метод измерений

Тип прибора

Диапазон измерений, мм

Погрешность

Предприятие-изготовитель

Микрометрический метод

Микрометр рычажный типа МР

0 - 25

± 1 мкм

ОАО «Калибр» (г. Москва)

Микрометр рычажный типа МР

0 - 25

± 2 мкм

То же

Метод определения толщины с применением многооборотного индикатора

Индикатор многооборотный

типа МИГ-1

0 - 1

1 мкм

ОАО «Калибр» (г. Москва)

типа МИГ-2

0 - 2

2 мкм

Метод вихревых токов

Толщиномер вихретоковый типа ВТ-60Н с микропроцессором

0,005 - 1,0

3 + 0,2(1000/Т и - 1)% (Т и - измеряемое значение толщины покрытия)

МНПО «Спектр» (г. Москва)

Вихретоковый микропроцессорный толщиномер покрытий типа ВТ-51 НП

0,01 - 1,999

± (0,03х + 1,0) мкм
(х - измеряемое значение толщины покрытия)

То же

Магнитоиндукционный метод

Магнитный микропроцессорный толщиномер покрытий типа МТ-51 НП

0,004 - 1,999

± (0,03х + 1,0) мкм (х - измеряемое значение толщины покрытия)

МНПО «Спектр», (г. Москва)

Магнитоиндукционный метод или метод вихревых токов (в зависимости от датчика)

Прибор измерения геометрических параметров многофункциональный «Константа К5» типа ИДЗШ

0 - 5,0

Не более 2 %

АО «Константа» (г. Санкт-Петербург)

ПРИЛОЖЕНИЕ Б
(рекомендуемое)
Немагнитные покрытия на магнитных основных металлах.
Измерение толщины покрытия. Магнитный метод

Б.1 Назначение и область применения

Настоящий стандарт устанавливает требования к применению приборов магнитного типа для неразрушающих измерений толщины немагнитных покрытий (включая стекловидные и фарфоровые эмалевые покрытия) на магнитных основных металлах.

Метод применим только для измерений плоских образцов.

Б.2 Сущность метода

Приборы магнитного типа для измерения толщины покрытия измеряют либо магнитное притяжение между постоянным магнитом и основным металлом с покрытием, либо сопротивление магнитного потока, проходящего через покрытие и основной металл.

Б.3 Факторы, влияющие на точность измерения*

На точность измерения толщины покрытия могут влиять следующие факторы.

Б.3.1 Толщина покрытия

Точность измерения изменяется с толщиной покрытия и зависит от конструкции прибора. Для тонких покрытий - точность постоянна и не зависит от толщины. Для толстых покрытий - точность приблизительно постоянная.

Б.3.2 Магнитные свойства основного металла

Различные магнитные свойства основного металла влияют на точность измерения толщины покрытия магнитным метолом. На практике изменения в магнитных свойствах низкоуглеродистых сталей можно считать несущественными. Для того чтобы избежать влияния нескольких или единичных тепловых обработок и холодной обработки, прибор следует калибровать, используя калибровочный эталон с основным металлом с теми же свойствами, что и испытуемый образец или, если возможно, с помощью испытуемого образца перед нанесением покрытия.

Б.3.3 Толщина основного металла

Для каждого прибора существует критическая толщина основного металла,выше которой увеличение толщины не влияет на точность измерения. Так как критическая толщина зависит от датчика прибора и природы основного металла, ее значение определяют экспериментально, если она не оговорена изготовителем.

Б.3.4 Краевой эффект

Метод чувствителен к резким изменениям контура поверхности испытуемого образца. Измерения, проводимые слишком близко к кромке или с внутренней стороны углубления, не будут достоверными, если прибор не откалиброван специально для таких измерений. Краевой эффект может распространяться на расстояние до 20 мм от края образца в зависимости от прибора.

Б.3.5 Кривизна

На измерения оказывает влияние кривизна поверхности испытуемого образца. Влияние кривизны поверхности на точность измерения зависит в большой степени от модели и типа прибора, но всегда увеличивается с уменьшением радиуса кривизны. Приборы с двухполюсными датчиками могут давать разные показания, если их полюса в плоскостях параллельны или перпендикулярны к оси цилиндрической поверхности. Подобный эффект можно получить и с однополюсным датчиком с неравномерно стертым наконечником.

Измерения, проводимые на изогнутых испытуемых образцах, требуют специальной калибровки прибора.

Б.3.6. Шероховатость поверхности

Если повторные измерения, сделанные на шероховатой поверхности по ГОСТ 2789-73*, в пределах стандартного образца существенно различаются, необходимо число измерений увеличить, по крайней мере, до 5.

Б.3.7 Направление механической обработки основного металла

На измерения, проводимые на приборах, имеющих двухполюсный датчик или неравномерно изношенный однополюсный датчик, может оказывать влияние направление механической обработки магнитного основного металла (например проката), при этом показания прибора меняются в зависимости от ориентации датчика на поверхности.

Б.3.8 Остаточный магнетизм

Остаточный магнетизм основного металла влияет на точность измерения приборами, работающими по принципу постоянного магнитного поля. Влияние остаточного магнетизма на точность измерения значительно меньше в том случае, когда измерения проводят приборами, работающими по принципу переменного магнитного поля ().

Б.3.9 Магнитные поля

Сильные магнитные поля, создаваемые различными типами электрооборудования, могут быть серьезной помехой при работе магнитных приборов, использующих постоянное магнитное поле ().

*В настоящем стандарте измерения проводят с той же точностью, с какой откалиброван прибор.

Б.3.10 Посторонние частицы

Датчики приборов должны обеспечивать физический контакт с испытуемой поверхностью. Так как эти приборы чувствительны к инородным частицам, мешающим непосредственному контакту между датчиком и поверхностью покрытия, наконечник датчика следует проверять на чистоту.

Б.3.11 Проводимость покрытия

Некоторые магнитные приборы работают в частотах 200 - 2000 Гц. В этих частотах в толстых хорошо проводящих покрытиях возникают вихревые токи, которые могут влиять на показания прибора.

Б.3.12 Давление датчика

Полюсы испытательного датчика приходится применять при постоянном, но довольно высоком давлении, но при этом не должно происходить деформации покрытия, даже если материал покрытия мягкий. Мягкие покрытия можно покрывать фольгой, толщину фольги вычитают из результатов испытания. Такое решение является также необходимым при измерении толщины фосфатных покрытий.

На показания приборов, работающих попринципу магнитного притяжения, может влиять направление магнита по отношению к гравиметрическому полю земли. Работа датчика прибора с горизонтальной или вертикальной ориентацией требует дифференцированной калибровки. Без этой калибровки работа невозможна.

Б.4 Калибровка приборов

Б.4.1 Общие положения

Перед работой каждый прибор следует калибровать в соответствии с инструкциями изготовителя, применяя соответствующие калибровочные эталоны, или сравнением измерений толщины, сделанных на отобранных испытуемых образцах магнитным методом, установленным настоящим стандартом, относительно специального покрытия. Для приборов, которые не могут быть откалиброваны,отклонение от номинального значения определяют сравнением с калибровочными эталонами и принимают во внимание при всех измерениях.

Во время работы следует часто проверять калибровку прибора. Следует обратить внимание на факторы, перечисленные в , и на методику, указанную в .

Б.4.2 Калибровочные эталоны

В качестве калибровочных эталонов одинаковой толщины применяют либо прокладки или фольгу, либо эталоны с покрытием.

Б.4.2.1 Калибровочная фольга

Примечание - В этом пункте слово «фольга» применяют для обозначения немагнитной металлической или неметаллической фольги или прокладки.

Из-за трудности в обеспечении достаточного контакта фольга обычно не рекомендуется для калибровки приборов, работающих по принципу магнитного притяжения. Ее можно применять для калибровки других типов приборов. Фольга имеет преимущества при калибровке на изогнутых поверхностях и в этих случаях более применима, чем эталоны с покрытием.

Для предотвращения ошибок при измерении необходимо установить плотный контакт между фольгой и основным металлом. По возможности следует избегать упругой фольги.

Калибровочная фольга деформируется и поэтому ее следует часто заменять.

Б.4.2.2 Эталоны с покрытием

Эталоны с покрытием состоят из покрытий известной и одинаковой толщины, прочно связанных с основным металлом.

Б.4.3 Контроль

Б.4.3.1 Шероховатость поверхности и магнитные свойства основного металла калибровочных эталонов должны быть аналогичны шероховатости и свойствам испытуемого образца. Для подтверждения их соответствия рекомендуется сравнить показания, полученные на основном металле испытуемого образца, и калибровочного эталона без покрытий.

Б.4.3.2 В некоторых случаях калибровку прибора проверяют, поворачивая датчик до 90° ( и ).

Б.4.3.3 Толщина основного металла испытуемого образца и калибровочного эталона должна быть одинаковой, если критическая толщина, указанная в , не завышена.

Толщина основного металла калибровочного эталона и испытуемого образца должна быть достаточной для того, чтобы показания прибора не зависели от толщины основного металла.

Б.4.3.4 Если кривизна поверхности покрытия, предназначенная для измерения, мешает калибровке на плоской поверхности, кривизна калибровочного эталона или основного металла, на который помещают калибровочную фольгу, должна быть одинаковой с испытуемым образцом.

Б.5 Методика проведения измерения

Б.5.1 Общие положения

Каждый прибор должен работать в соответствии с инструкциями изготовителя. Особое внимание следует уделять факторам, перечисленным в разделе .

Калибровку приборов следует проводить по плану испытания () каждый раз перед использованием прибора и через частые интервалы времени во время работы.

Б.5.2 Толщина основного металла

Проверяют, не превышает ли толщина основного металла критическую толщину. Если не превышает, используют метод, указанный , либо обеспечивают проведение калибровки на калибровочном эталоне, имеющем ту же толщину и магнитные свойства, что и испытуемый образец.

Б.5.3 Краевой эффект

Измерения не следует проводить близко к краю, отверстию, внутри угла испытуемого образца, если прибор специально не калиброван для такого измерения.

Б.5.4 Кривизна

Б.5.5 Число измерений

Принимая во внимание влияние различных факторов на показания приборов, необходимо сделать несколько измерений в каждой точке измеряемой поверхности по ГОСТ 8.362-79. Местные отклонения в толщине покрытий требуют проведения нескольких измерений на эталонной площади; это особенно относится к шероховатой поверхности. Приборы, работающие по принципу магнитного притяжения, чувствительны к вибрации, поэтому завышенные результаты измерения не должны учитываться.

Если направление механической обработки оказывает сильное влияние на показания, измерения на испытуемых образцах должны проводиться датчиком в том же направлении, что и в процессе калибровки. Если это невозможно, следует сделать четыре измерения на той же измеряемой площади поверхности при вращении датчика до 90°.

Б.5.7 Остаточный магнетизм

При наличии остаточного магнетизма в основном металле необходимо при использовании двухполюсного прибора с постоянным магнитным полем проводить измерения в двух направлениях, отличающихся на 180°.

Дня того чтобы получить достоверные результаты, необходимо размагнитить испытуемый образец.

Б.5.8 Очистка поверхности

Перед измерениями толщины поверхность образца должна быть очищена от грязи, жира, продуктов коррозии без нарушения целостности покрытия. Следует избегать измерений толщины покрытия на участках с видимыми дефектами, которые удаляются с трудом: остатки флюса от пайки или сварки, пятна от кислоты, окалина, окислы.

Б.5.9 Свинцовые покрытия

Свинцовые покрытия могут прилипать к магниту прибора, работающего по принципу магнитного притяжения. Применение очень тонкой масляной пленки улучшит воспроизводимость измерений, при этом остатки масла следует вытереть так, чтобы поверхность была практически сухой при измерениях. Не следует применять масло на других покрытиях, кроме свинцовых.

Б.5.10 Технический персонал

Полученные результаты могут зависеть от квалификации оператора. Давление на датчик или скорость приложения балансирующей нагрузки на магнит у разных людей различна. Такие воздействия могут быть снижены или сведены к минимуму при использовании прибора, калиброванного тем же оператором, который проводит измерение, или при использовании датчиков с постоянным давлением. В тех случаях, когда не используют датчики с постоянным давлением, необходимо применение измерительного прибора.

Б.5.11 Расположение датчика

Датчик прибора должен располагаться перпендикулярно к испытуемой поверхности образца в точке измерения. Для приборов, основанных на измерении силы притяжения, это является существенным. Для других приборов желательно слегка наклонить датчик и выбрать минимальный угол наклона. Если на гладкой поверхности полученные результаты существенно зависят от угла наклона,вероятно, датчик изношен и требует замены.

В случае, если прибор, работающий по принципу силового притяжения, применяют в горизонтальном или вертикальном положении, его следует калибровать для каждого положения отдельно.

Б.6 Точность измерения

Прибор должен быть откалиброван так, чтобы толщину покрытия можно было измерить с точностью до 10 % действительной толщины или с точностью в пределах ±1,5 мкм, в зависимости от того, что является оптимальным (). Этот метод может быть очень точным.

ПРИЛОЖЕНИЕ В
(рекомендуемое)
Токонепроводящие покрытия на металлах с немагнитной основой. Измерение толщины покрытия. Метод вихревых токов (токи Фуко)

В.1 Назначение и область применения

Настоящий стандарт устанавливает метод применения вихретоковыхприборов для неразрушающего измерения толщины токонепроводящего покрытия на металлах с немагнитной основой. Настоящий метод также применяют для измерения толщины большинства оксидных покрытий, получаемых в процессе анодной обработки.

В.2 Сущность метода

Приборы с токами Фуко работают по принципу образования в системе датчика прибора высокочастотного электромагнитного поля, вызывая токи Фуко в проводнике, на котором расположен датчик; амплитуда и фаза этих токов соответствуют толщине токонепроводящего покрытия, расположенного между проводником и датчиком.

В.3 Факторы, влияющие на точность измерения

В.3.1 Толщина покрытия

Для метода характерны измерения с различной точностью. Для тонких покрытий точность (в абсолютных пределах) постоянна, не зависит от толщины покрытия и для единичного измерения составляет около 0,5 мкм. Для покрытий толщиной свыше 25 мкм погрешность измерения составляет приблизительно постоянную часть толщины покрытия.

В том случае, если толщина покрытия 5 мкм или менее, рекомендуется взять среднее из нескольких измерений. Иногда невозможно достигнуть точности, указанной в , для покрытия толщиной менее 3 мкм.

В.3.2 Электрические свойства основного металла

На измерения токами Фуко влияет электропроводность основного металла, которая зависит от химического состава и термической обработки.

Влияние электропроводности на измерение зависит от конструкции и типа прибора.

В.3.3 Толщина основного металла

Для каждого прибора существует критическая толщина основного металла, выше которой увеличение толщины основы не влияет на измерения. Так как толщина основы и электропроводность влияют на точность измерения, значение критической толщины следует определить экспериментально, если она не указана изготовителем.

Для данной измеряемой частоты чем выше электропроводность основного металла, тем меньше ее критическая толщина. Для данного основного металла чем выше измеряемая частота, тем меньше критическая толщина основного металла.

В.3.4 Краевой эффект

Приборы для измерения токами Фуко чувствительны к резким изменениям конфигурации испытуемого образца. Потому измерения, проводимые близко к краю или выступу, требуют специальной калибровки прибора.

В.3.5 Кривизна

На измерения влияет кривизна испытуемого образца. Влияние кривизны зависит от конструкции и типа прибора, всегда становится более четко выраженным с уменьшением радиуса кривизны на искривленных образцах и требует специальной калибровки прибора.

В.3.6 Шероховатость поверхности

На измерения влияет шероховатость поверхности основного металла и покрытия. Шероховатые поверхности могут вызвать как систематические, так и случайные ошибки. Ошибки можно уменьшить проведением большого числа измерений. Каждое измерение проводят на различных участках.

В случае,если основа металла шероховатая, необходимо установить нулевое значение прибора в различных точках непокрытой поверхности основного металла. Если нет аналогичного основного металла,покрытие на испытуемом образце следует снять раствором, который не повреждает основного металла.

В.3.7 Инородные частицы

Измерение токами Фуко требует физического контакта с испытуемой поверхностью, поэтому эти приборы чувствительны к инородному материалу, который препятствует установлению прочного контакта между датчиком и поверхностью покрытия. Наконечник датчика следует проверять на чистоту.

В.3.8 Давление датчика

Давление, с которые накладывают датчик на испытуемый образец, влияет на показания прибора и поэтому его следует поддерживать постоянным. Этого можно достичь применением соответствующего зажимного приспособления.

В.3.9 Положение датчика

Чувствительность прибора меняется с наклоном датчика, поэтому датчик всегда должен быть установлен перпендикулярно к испытуемой поверхности в точке измерения. Этого можно достичь применением соответствующего зажимного приспособления.

В.3.10 Деформация испытуемых образцов

Испытуемые образцы с мягкими покрытиями или тонкие испытуемые образцы могут деформироваться под действием датчика. Измерения таких испытуемых образцов могут быть невозможными и могут быть выполнены только с использованием датчиков и зажимных устройств.

В.3.11 Температура датчика

Так как колебания температуры влияют на характеристики датчика, его следует применять при тех же температурных условиях, что и при калибровке.

В.4 Калибровка приборов

В.4.1 Общие положения

Перед измерением каждый прибор следует калиброватьв соответствии с инструкциями изготовителя, применяя соответствующие калибровочные эталоны.

Следует обратить внимание на факторы, перечисленные в разделе , и методику проведения испытаний, приведенную в разделе .

В.4.2 Калибровочные эталоны

Калибровочные эталоны известной толщины используют в виде фольги или образцов с покрытием.

В.4.2.1 Калибровочная фольга

В.4.2.1.1 Калибровочную фольгу, применяемую для калибровки приборов, как правило, изготовляют из соответствующих пластических материалов. Калибровочная фольга является более эффективной и пригодной для калибровки искривленных поверхностей, чем использование эталонов с покрытием.

В.4.2.1.2 Для предотвращения ошибок при измерении необходимо поддерживать контакт, установленный между фольгой и основным металлом. Не следует использовать эластичные виды фольги.

При калибровке по фольге образуются вдавленности, поэтому фольгу, по возможности, надо менять.

В.4.2.2 Эталоны с покрытием

Эталоны с покрытием состоят из токонепроводящих покрытий известной равномерной толщины, прочно сцепленных с основным металлом.

В.4.3 Контроль

В.4.3.1 Основа калибровочных эталонов должна иметь те же электрические свойства, что и основной металл испытуемого образца. Для подтверждения соответствия калибровочных эталонов рекомендуется сравнение показаний, полученных на основном металле непокрытого калибровочного эталона, и испытуемого образца.

В.4.3.2 В случае, если толщина основного металла превышает критическую толщину, она не влияет, как указано в , на измерении толщины. В том случае, если толщина основного металла не превышает критическую толщину, она должна быть, по возможности, одинаковой. Если это невозможно, калибровочный эталон или испытуемый образец следует покрыть на соответствующую толщину металлом с аналогичными электрическими свойствами, чтобы показания прибора не зависели от толщины основного металла. При этом покрытие на калибровочном эталоне или испытуемом образце должно быть на одной стороне, и между основным и покрывающим металлом не должно быть никакого зазора.

В.4.3.3 В случае, если кривизна измеряемого покрытия мешает калибровке на плоской поверхности, кривизна эталона с покрытием или основы, покрытой калибровочной фольгой, должна совпадать с кривизной испытуемого образца.

В.5 Методика проведения испытания

В.5.1 Общие положения

Каждый прибор используют в соответствии с инструкциями изготовителя, уделяя внимание факторам, перечисленным в разделе .

Калибровку прибора следует проверять перед испытанием и через короткие промежутки времени (не менее одного раза в час).

Следует соблюдать меры предосторожности.

В.5.2 Толщина основного металла

Проверяют, превышает ли толщина основного металла критическую толщину. Если не превышает, то необходимо применить метод, указанный в , или удостовериться в том, что калибровка проведена на калибровочном эталоне с той же толщиной и электрическими свойствами, что испытуемый образец.

В.5.3 Краевой эффект

Измерения не должны проводиться близко к краю, отверстию, внутреннему углу образца и т. д., если прибор специально не калиброван для таких измерений.

В.5.4 Кривизна

Измерения не следует проводить на искривленных поверхностях испытуемого образца, если прибор специально не калиброван для таких измерений.

В.5.5 Количество измерений

Для нормального измерения прибора необходимо снять несколько показаний в каждой точке. Местные колебания толщины покрытия также требуют, чтобы на определенной площади было проведено несколько измерений, это особенно относится к шероховатым поверхностям.

В.5.6 Чистота поверхности

Перед проведением измерений необходимо удалить с поверхности любые посторонние вещества, такие как грязь, пыль, продукты коррозии, не повреждая материал покрытия.

В.6 Требования к точности измерений

Прибор должен быть откалиброван так, чтобы можно было определить толщину покрытия с погрешностью измерения ± 10 % действительной толщины. При измерении толщины покрытия менее 5 мкм рекомендуется выбирать среднее показание. Такую точность для покрытий толщиной менее 3 мкм получить невозможно.

Ключевые слова: лакокрасочные материалы, покрытия, определение толщины, термины и определения, методы измерений, микрометрический метод, многооборотный индикатор, магнитные методы, токи Фуко, технические характеристики приборов